论文:2021,Vol:39,Issue(1):17-26
引用本文:
张阳, 周洲, 王科雷, 范中允. 分布式动力系统参数对翼身融合布局无人机气动特性的影响[J]. 西北工业大学学报
ZHANG Yang, ZHOU Zhou, WANG Kelei, FAN Zhongyun. Influences of distributed propulsion system parameters on aerodynamic characteristics of a BLI-BWB UAV[J]. Northwestern polytechnical university

分布式动力系统参数对翼身融合布局无人机气动特性的影响
张阳, 周洲, 王科雷, 范中允
西北工业大学 航空学院, 陕西 西安 710072
摘要:
以耦合分布式动力系统的边界层吸入(BLI)翼身融合(BWB)布局无人机为研究对象,研究了动力系统参数对全机在巡航/起飞条件下的气动影响。使用动量源方法(MSM)对NASA涵道螺旋桨模型进行了数值计算,验证了文中数值计算方法的可靠性。采用结构网格及S-A湍流模型求解雷诺平均Navier-Stokes (RANS)方程的方法,对装配D80涵道风扇的全机构型在巡航状态下的气动特性进行了数值计算,验证了BWB布局飞行器在分布式动力系统影响下具有增升的气动效果,并与不同动力系统尺寸参数的构型进行了对比。研究了动力系统推力大小对起飞状态下全机的气动影响。研究表明,由于分布式动力系统的抽吸作用,有效提高了机身附近的流速,同时一定程度上抑制了气流的展向流动,使得全机的升力系数提高了16%,升阻比提高了10%;在同等推力的条件下,D80涵道风扇桨盘载荷更大,使得进出口静压较小,气流流速较大,相比于D150涵道风扇,全机升阻比提高了15%;起飞时增大动力系统推力可以降低机身上表面气流分离的可能性,具备提高起飞质量的能力。
关键词:    分布式动力    边界层吸入    翼身融合    涵道风扇    动量源方法    气动特性   
Influences of distributed propulsion system parameters on aerodynamic characteristics of a BLI-BWB UAV
ZHANG Yang, ZHOU Zhou, WANG Kelei, FAN Zhongyun
School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
Focusing on the aerodynamic characteristics of the blended wing body (BWB) aircraft with boundary layer ingestion(BLI) distributed propulsion system; the influences of propulsion system parameters under the condition of cruise and takeoff are studied. Firstly, based on the momentum source method (MSM), the NASA ducted propeller model is simulated, which verifies the reliability of the numerical method in this paper. Then, by using the method of structural grid and S-A turbulence model to solve the Reynolds averaged Navier-Stokes (RANS) equation, the aerodynamic characteristics of the BLI UAV model with D80 ducted fan in cruise state are numerically calculated. It is proved that the advantage of the BLI distributed propulsion system is superior in increasing lift. And the aerodynamic characteristics of the BLI UAV with different propulsion system parameters are compared. At last, the aerodynamic effect of ducted fan thrust on the BLI UAV is carried out. The results show that, due to the suction function of the BLI distributed propulsion system, the air flow velocity near the BWB fuselage is effectively accelerated, and the flow along the spanwise is restrained, which improves the lift coefficient about 16% and lift-to-drag ratio about 10%. Under the condition of equal thrust, the D80 ducted fan brings larger load of the propeller, which makes the static pressure at the inlet and outlet smaller. Compared with D150 ducted fan, the lift-to-drag ratio is increased by 15%. When aircraft takes off, increasing the thrust of the ducted fan can reduce the possibility of flow separation on the upper surface of the fuselage, which is conducive to the safety.
Key words:    UAV    distributed propulsion    boundary layer ingestion(BLI)    blended wing body(BWB)    ducted fan    momentum source method    aerodynamic characteristics    lift-to-drag ratio    simulation   
收稿日期: 2019-09-12     修回日期:
DOI: 10.1051/jnwpu/20213910017
基金项目: 陕西省重点研发计划(2018ZDCXL-GY-03-04)与大院大所创新计划(TC2018DYDS24)资助
通讯作者: 周洲(1966-),女,西北工业大学教授,主要从事飞行器设计研究。e-mail:zhouzhou@nwpu.edu.cn     Email:zhouzhou@nwpu.edu.cn
作者简介: 张阳(1991-),西北工业大学博士研究生,主要从事飞行器设计研究。
相关功能
PDF(3350KB) Free
打印本文
把本文推荐给朋友
作者相关文章
张阳  在本刊中的所有文章
周洲  在本刊中的所有文章
王科雷  在本刊中的所有文章
范中允  在本刊中的所有文章

参考文献:
[1] LIOU M F, GRONSTAL D, KIM H J, et al. Aerodynamic design of the hybrid wing body with nacelle: N3-X propulsion airframe configuration[C]//AIAA Applied Aerodynamics Conference, 2016
[2] KIM Hyoungjin, LIOU Mengsing. Flow simulation of N3X hybrid wing body configuration[C]//51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 2013
[3] ASHCRAFT S W, PADRON A S, PASCIONI K A, et al. Review of propulsion technologies for N+3 subsonic vehicle concepts[R]. NASA TM-2011-217239
[4] SINGH R, NALIANDA D, SINGH R. Turbo-electric distributed propulsion-opportunities, benefits and challenges[J]. Aircraft Engineering and Aerospace Technology, 2014, 86(6): 543-549
[5] FELDER J, KIM H, BROWN G, et al. An Examination of the effect of boundary layer ingestion on turboelectric distributed propulsion systems[C]//49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 2011
[6] PLAS A. Performance of a boundary layer ingesting propulsion system[J]. Journal of Engineering for Industry, 2011, 117(1): 110-116
[7] OCHS S S, TILLMAN G, JOO J, et al. Computational fluid dynamics based analysis of boundary layer ingesting propulsion[J]. Journal of Propulsion and Power, 2017, 33(2): 522-530
[8] JONATHAN Gladin, JONATHAN Sands, BRIAN Kestner. Effects of boundary layer ingesting(BLI) propulsion systems on engine cycle selection and HWB vehicle sizing[C]//50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 2012
[9] 楊棟華,唐智裡. 分布式混合电推进的布局设计与优化[J]. 航空动力,2019(5): 68-70 YANG Donghua, TANG Zhili. Multidisciplinary design optimization for aircraft with distributed hybrid electric propulsion[J]. Journal of Aerospace Power, 2019(5): 68-70(in Chinese)
[10] RODRIGUEZ David L. Multidisciplinary optimization method for designing boundary-layer-ingesting inlets[J]. Journal of Aircraft, 2009, 46(3): 883-894
[11] GIULIANI James, CHEN Jenping. Numerical simulation of boundary layer ingesting(BLI) inlet/fan interaction[C]//50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference
[12] LUNDBLADH A. Distributed propulsion and turbo-fan scale effects[C]//17th Symposium on Airbreathing Engine, 2005
[13] WICK A T, HOOKER J R, ZEUNE C H. Integrated aerodynamic benefits of distributed propulsion[C]//53rd AIAA Aerospace Sciences Meeting, 2015
[14] MANTIC L V, DOULGERIS G, SINGH R. Computational analysis of the effects of a boundary layer ingesting propulsion system in transonic flow[J]. Journal of Aerospace Engineering, 2013, 227(8): 1215-1232
[15] RAJAGOPALAN R, FANUCCI J. Finite-difference model for vertical axis wind rotors[J]. Journal of Propulsion and Power, 1985, 1(6): 432-436
[16] GRUNWALD K J, GOODSON K W. Aerodynamic loads on an isolated shrouded-propeller configuration for angels of attack from-10° to 110°[R]. NASA TN D-995, 1962
相关文献:
1.余刚, 李栋, 张泽宇.翼身融合布局起飞状态动力效应影响研究[J]. 西北工业大学学报, 2020,38(2): 231-237