论文:2020,Vol:38,Issue(6):1352-1360
引用本文:
陈英, 陈涛, 李可为, 肖菊兰, 刘洪利. 一种基于FrFT的SAR多普勒调频率估计方法[J]. 西北工业大学学报
CHEN Ying, CHEN Tao, LI Kewei, XIAO Julan, LIU Hongli. Estimation Method of SAR Doppler Frequency Rate Based on FrFT[J]. Northwestern polytechnical university

一种基于FrFT的SAR多普勒调频率估计方法
陈英, 陈涛, 李可为, 肖菊兰, 刘洪利
成都工业学院, 四川 成都 611730
摘要:
针对现有多普勒调频率估计方法估计精度有限的问题,提出一种新的估计方法,该方法根据线性调频信号在FrFT域具有明显聚焦的特性实现对调频率的搜索。对从脉压后的数据域提取的若干强散射单元分别进行dechirp处理,进行FFT得到频域聚焦图像。提取各距离单元最大值点并进行加窗处理,然后经IFFT变换到慢时间域与dechirp共轭参考函数相乘,根据设定的阶数进行FrFT处理。通过评估FrFT变换后信号的熵值确定阶数是否达到最优,利用搜索的最优阶数计算出多普勒调频率。在实验数据分析部分,分别利用仿真数据以及实测数据对所提方法进行验证,最终结果分析表明该方法具有很高的估计精度,经过方位匹配滤波后可以得到聚焦良好的SAR图像。
关键词:    多普勒调频率    分数阶傅里叶变换    SAR    dechirp   
Estimation Method of SAR Doppler Frequency Rate Based on FrFT
CHEN Ying, CHEN Tao, LI Kewei, XIAO Julan, LIU Hongli
Chengdu Technological University, Chengdu 611730, China
Abstract:
Due to the problem that the existing Doppler frequency rate estimation method is limited by the estimation accuracy, a novel estimation method of Doppler frequency rate is proposed. The present method searches the frequency rate according to the characteristic of the chirp signal in the FrFT domain. Firstly, dechirp is performed on several strong scattering points extracted from the data domain after pulse compression, and a frequency domain focused image is obtained after FFT. Then the maximum point of each distance unit is extracted. The energy of the maximum point is selected by using the window processing. After that, IFFT is performed and the dechirp conjugate reference function is multiplied by using the selected points. FrFT is performed according to the preset orders. The entropy is used to evaluate whether the order of FRFT is optimal or not. The Doppler frequency rate is calculated by using the optimal order. The simulation and real data are processed and analyzed. The present method can estimate the Doppler frequency rate accurately. A well-focused SAR image is obtained after azimuth matching filtering.
Key words:    doppler frequency rate    FrFT    SAR    dechirp   
收稿日期: 2020-04-18     修回日期:
DOI: 10.1051/jnwpu/20203861352
基金项目: 四川省教育厅科研项目(18ZB0036)资助
通讯作者: 陈涛(1980-),成都工业学院讲师,主要从事信号与信息处理研究。e-mail:570560423@qq.com     Email:570560423@qq.com
作者简介: 陈英(1986-),女,成都工业学院讲师,主要从事SAR成像技术研究。
相关功能
PDF(4592KB) Free
打印本文
把本文推荐给朋友
作者相关文章
陈英  在本刊中的所有文章
陈涛  在本刊中的所有文章
李可为  在本刊中的所有文章
肖菊兰  在本刊中的所有文章
刘洪利  在本刊中的所有文章

参考文献:
[1] 保铮, 邢孟道, 王彤. 雷达成像技术[M]. 北京:电子工业出版社, 2005 BAO Zheng, YING Mengdao, WANG Tong. Radar Imaging Technology[M]. Beijing:Electronic Industry Publication, 2005(in Chinese)
[2] 唐禹, 邢孟道, 保铮, 等. 基于重叠子孔径极坐标算法的波前弯曲效应的补偿[J]. 电子学报, 2008, 36(6):1108-1113 TANG Yu, XING Mengdao, BAO Zheng, et al. Wavefront Curvature Compensation Based on Overlapped Subaperture Polar Format Algorithm[J]. Acta Electronica Sinica, 2008, 36(6):1108-1113(in Chinese)
[3] MEI Haiwen, MENG Ziqiang, LI Yachao, et al. Airborne Bistatic Forward-Looking SAR Using the Polynomial NCS Algorithm[J]. IEEE Sensors Letters, 2018, 2(3):58-61
[4] WAHL D E, EICHEL P H, GHIGLIA D C, et al. Phase Gradient Autofocus-a Robust Tool for High Resolution Phase Correction[J]. IEEE Trans on AES, 1994, 30(3):827-835
[5] LEI Ran, ZHENG Liu, TAO Li. Extension of Map-Drift Algorithm for Highly Squinted SAR Autofocus[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(9):4032-4044
[6] YE W, YEO T S, Bao Z. Weighted Least-Squares Estimation of Phase Errors for SAR/ISAR Autofocus[J]. IEEE Trans on Groscience and Remote Sensing, 1999, 37(5):2487-2494
[7] THOMAS Kragh J, Alaa Kharbouch A. Monotonic Iterative Algorithm for Minimum-Entropy Autofocus[C]//IEEE International Conference on Image Processing, Atlanta. 2006:645-648
[8] HALDUN M, ORHAN A, ALPER M, et al. Digital Computation of the Fractional Fourier Transform[J]. IEEE Trans on Signal Processing, 1996, 44(9):2141-2150
[9] CUI Jian, LI Zhaohui, LI Qihu. Strong Scattering Targets Separation Based on Fractional Fourier Transformation in Pulse-to-Pulse Coherent Acoustical Doppler Current Profilers[J]. IEEE Journal of Oceanic Engineering, 2019, 44(2):466-480
[10] LU Jian, YANG Jian, LIU Xinghai. Moving Ground Target Detection with Main-Lobe Jamming Based on Fractional Fourier Transform and Differential Cancellation[J]. IEEE Sensors Journal, 2019, 19(6):2275-2286
[11] TAO R, LI Y L, WANG Y. Short-Time Fractional Fourier Transform and Its Applications[J]. IEEE Trans on Signal Processing, 2010, 58(5):2568-2580
[12] LUO Yiran, YU Chunyang, CHEN Shaohua. A Novel Doppler Rate Estimator Based on Fractional Fourier Transform for High-Dynamic GNSS Signal[J]. IEEE Access, 2019, 7(5):29575-29595
[13] XU Liyun, ZHANG Feng, TAO Ran. Fractional Spectral Analysis of Randomly Sampled Signals and Applications[J]. IEEE Trans on Instrumentation and Measurement, 2017, 66(11):2869-2881
[14] AN Hongyang, WU Junjie, SUN Zhichao. A 2-D Nonlinear Chirp Scaling Algorithm for High Squint Geo Sar Imaging Based on Optimal Azimuth Polynomial Compensation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(12):5724-5735
[15] CARRARA W G, GOODMAN R S, MAJEWSKI R M. Spotlight Synthetic Aperture Radar-Signal Processing and Algorithms[M]. Boston, MA:Artech House, 1995