论文:2020,Vol:38,Issue(6):1330-1338
引用本文:
谢建峰, 杨啟明, 戴树岭, 王婉扬, 张建东. 基于强化遗传算法的无人机空战机动决策研究[J]. 西北工业大学学报
XIE Jianfeng, YANG Qiming, DAI Shuling, WANG Wanyang, ZHANG Jiandong. Air Combat Maneuver Decision Based on Reinforcement Genetic Algorithm[J]. Northwestern polytechnical university

基于强化遗传算法的无人机空战机动决策研究
谢建峰1,2, 杨啟明3, 戴树岭1, 王婉扬3, 张建东3
1. 北京航空航天大学 自动化科学与电气工程学院, 北京 100191;
2. 中国航空无线电电子研究所, 上海 200241;
3. 西北工业大学 电子信息学院, 陕西 西安 710129
摘要:
伴随着无人机技术的不断发展,在军事战场上使用无人机的趋势日益明显,但是无人机自主空战能力还有待进一步提高。空战机动决策是实现无人机自主空战的关键。遗传算法拥有较好的鲁棒性和搜索性,适用于大规模优化问题求解,但无法对没有显式目标函数的问题建模。基于强化学习思想,采用改进的强化遗传算法针对无人机的空战机动决策进行建模。根据工程应用需求,建立了典型的仿真测试场景,仿真结果表明基于强化遗传算法建立的空战机动决策模型,能够获得正确的机动决策序列,在作战中获得位置优势。
关键词:    空战机动决策    遗传算法    强化学习    控制与决策   
Air Combat Maneuver Decision Based on Reinforcement Genetic Algorithm
XIE Jianfeng1,2, YANG Qiming3, DAI Shuling1, WANG Wanyang3, ZHANG Jiandong3
1. School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China;
2. China Aeronautical Radio Electronics Research Institute, Shanghai 200241, China;
3. School of Electronics and Information, Northwestern Polytechnical University, Xi'an 710129, China
Abstract:
With the continuous development of UAV technology, the trend of using UAV in the military battlefield is increasingly obvious, but the autonomous air combat capability of UAV needs to be further improved. The air combat maneuvering decision is the key link to realize the UAV autonomous air combat, and the genetic algorithm has good robustness and global searching ability which is suitable for solving large-scale optimization problems. This paper uses an improved genetic algorithm to model UAV air combat maneuvering decisions. Based on engineering application requirements, a typical simulation test scenario is established. The simulation results show that the air combat maneuvering decision model based on reinforcement genetic algorithm in this paper can obtain the correct maneuvering decision sequence and gain a position advantage in combat.
Key words:    air combat maneuvering decision    genetic algorithm    reinforcement learning    control and decision    UAV    model    simulation test scenario   
收稿日期: 2020-03-17     修回日期:
DOI: 10.1051/jnwpu/20203861330
基金项目: 航空科学基金(2017ZC53033)资助
通讯作者:     Email:
作者简介: 谢建峰(1975-),北京航空航天大学博士研究生,主要从事航空电子系统设计、系统建模及仿真验证研究。
相关功能
PDF(1866KB) Free
打印本文
把本文推荐给朋友
作者相关文章
谢建峰  在本刊中的所有文章
杨啟明  在本刊中的所有文章
戴树岭  在本刊中的所有文章
王婉扬  在本刊中的所有文章
张建东  在本刊中的所有文章

参考文献:
[1] 丁达理,魏政磊,唐上钦,等. 自适应预测权重的空战鲁棒机动决策方法[J]. 系统工程与电子技术,2020,42(10):2275-2284 DING Dali, WEI Zhenglei, TANG Shangqin, et al. Robust Maneuvering Decision-Making Method for Air Combat Using Adaptive Prediction Weight[J]. Systems Engineering and Electronics, 2020,42(10):2275-2284(in Chinese)
[2] 张宏鹏,黄长强,轩永波,等. 基于深度神经网络的自主空战机动决策[J]. 兵工学报, 2020, 41(8):1613-1622 ZHANG Hongpeng, HUANG Changqiang, XUAN Yongbo, et al. Maneuver Decision of Autonomous Air Combat Based on Deep Neural Network[J]. Acta Armamentari, 2020, 41(8):1613-1622(in Chinese)
[3] JI H, YU M, HAN Q, et al. Research on the Air Combat Countermeasure Generation Based on Improved TIMS Model[J]. Journal of Physics:Conference Series, 2018, 1069(1):012039
[4] JOHN K, KALMANJE K. Artificial Immune System Approach for Air Combat Maneuvering[C]//Proceedings of SPIE-the International Society for Optical Engineering, 2010:656009
[5] 嵇慧明,余敏建,乔新航,等. 改进BAS-TIMS算法在空战机动决策中的应用[J]. 国防科技大学学报,2020,42(4):123-133 JI Huiming, YU Minjian, QIAO Xinhang, et al. Application of the Improved BAS-TIMS Algorithm in Air Combat Maneuver Decision[J]. Journal of National University of Defense Technology, 2020, 42(4):123-133(in Chinese)
[6] 左家亮,杨任农,张滢,等. 基于启发式强化学习的空战机动智能决策[J]. 航空学报,2017,38(10):217-230 ZUO Jialiang, YANG Rennong, ZHANG Ying, et al. Intelligent Decision-Making in Air Combat Maneuvering Based on Heuristic Reinforcement Learning[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(10):217-230(in Chinese)
[7] 孙楚,赵辉,王渊,等. 基于强化学习的无人机自主机动决策方法[J]. 火力与指挥控制,2019,44(4):142-149 SUN Chu, ZHAO Hui, WANG Yuan, et al. UCAV Autonomic Maneuver Decision-Making Method Based on Reinforcement Learning[J]. Fire Control & Command Control, 2019, 44(4):142-149(in Chinese)
[8] 杜海文,崔明朗,韩统,等. 基于多目标优化与强化学习的空战机动决策[J]. 北京航空航天大学学报,2018,44(11):2247-2256 DU Haiwen, CUI Minglang, HAN Tong, et al. Maneuvering Decision in Air Combat Based on Multi-Objective Optimization and Reinforcement Learning[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(11):2247-2256(in Chinese)
[9] ZHANG X, LIU G, YANG C, et al. Research on Air Combat Maneuver Decision-Making Method Based on Reinforcement Learning[J]. Electronics, 2018, 7(11):279
[10] IMMANUEL S D, CHAKRABORTY U K. Genetic Algorithm:an Approach on Optimization[C]//2019 International Conference on Communication and Electronics Systems, 2020
[11] 邓可,彭宣淇,周德云. 基于矩阵对策与遗传算法的无人机空战决策[J]. 火力与指挥控制,2019,44(12):61-66 DENG Ke, PENG Xuanqi, ZHOU Deyun. Study on Air Combat Decision Method of UAV Based on Matrix Game and Genetic Algorithm[J]. Fire Control & Command Control, 2019,44(12):61-66(in Chinese)
[12] SMITH R E, DIKE B A, MEHRA R K, et al. Classifier Systems in Combat:Two-Sided Learning of Maneuvers for Advanced Fighter Aircraft[J]. Computer Methods in Applied Mechanics and Engineering, 2000, 186(2/3/4):421-437
[13] SONG J, HOU C, XUE G, et al. Study of Constellation Design of Pseudolites Based on Improved Adaptive Genetic Algorithm[J]. Journal of Communications, 2016, 11(9):879-885
[14] CHEN J, ZHANG D, LIU D, et al. A Network Selection Algorithm Based on Improved Genetic Algorithm[C]//2018 IEEE 18th International Conference on Communication Technology, 2018
[15] 宋遐淦. 不确定环境下智能空战优化决策算法研究[D]. 南京:南京航空航天大学, 2017 SONG Xiagan. Research on Intelligent Air Combat Decision under Uncertain Environment[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2017(in Chinese)
[16] 曾宇航. 小型尾座式无人机垂直起降及悬停控制研究[D]. 长沙:国防科技大学,2017 ZENG Yuhang. Research on Vertical Take-Off and Landing and Hovering Control of Small Tailsitter Unmanned Aerial Vehicle[D]. Changsha:National University of Defense Technology, 2017(in Chinese)
[17] FRED A, GIRO C, MICHAEL F, et al. Automated Maneuvering Decisions for Air-to-Air Combat[C]//Proc AIAA Guidance Navigation and Control Conference, Monterey, 1987
[18] YANG Q, ZHANG J, SHI G, et al. Maneuver Decision of UAV in Short-Range Air Combat Based on Deep Reinforcement Learning[J]. IEEE Access, 2020, 8:363-378
[19] 张维,杨康宁,张民. 一种求解不等圆Packing问题的改进遗传模拟退火算法[J]. 西北工业大学学报,2017,35(6):1033-1039 ZHANG Wei, YANG Kangning, ZHANG Min. An Improved Genetic Simulated Annealing Algorithm to Solve the Unequal Circle Packing Problem[J]. Journal of Northwestern Polytechnical University, 2017, 35(6):1033-1039(in Chinese)
[20] SHARMA J, SINGHAL R S. Comparative Research on Genetic Algorithm, Particle Swarm Optimization and Hybrid GA-PSO[C]//2015 2nd International Conference on Computing for Sustainable Global Development, 2015
[21] MATSUMOTO K, TAJIMA Y, SAITO R, et al. Learning Classifier System with Deep Autoencoder[C]//2016 IEEE Congress on Evolutionary Computation, 2016:4739-4746
[22] PEDROZO W G, NIEVOLA J C, RIBEIRO D C. An Adaptive Approach for Index Tuning with Learning Classifier Systems on Hybrid Storage Environments[C]//International Conference on Hybrid Artificial Intelligence Systems Springer, Cham, 2018:716-729
[23] SU C, GAO Y, CAO C. Learning Classifier System Using Both Labeled and Unlabeled Data[C]//Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation ACM, 2010:1065-1066
[24] O'HARA T, BULL L. A Memetic Accuracy-Based Neural Learning Classifier System[C]//IEEE Congress on Evolutionary Computation, Edinburgh, 2005:2040-2045
[25] 国海峰, 侯满义, 张庆杰. 基于统计学原理的无人作战飞机鲁棒机动决策[J]. 兵工学报, 2017(1):163-167 GUO Haifeng, HOU Manyi, ZHANG Qingjie. UCAV Robust Maneuver Decision Based on Statistics Principle[J]. Acta Armamentarii, 2017(1):163-167(in Chinese)