论文:2020,Vol:38,Issue(6):1249-1256
引用本文:
马凯超, 唐长红, 张建叶, 牛孝飞, 范庆志. 舰载螺旋桨运输机发动机短舱飞行载荷设计[J]. 西北工业大学学报
MA Kaichao, TANG Changhong, ZHANG Jianye, NIU Xiaofei, FAN Qingzhi. Flight Load Design of Nacelle of Carrier-Based Propeller Transport Aircraft[J]. Northwestern polytechnical university

舰载螺旋桨运输机发动机短舱飞行载荷设计
马凯超, 唐长红, 张建叶, 牛孝飞, 范庆志
航空工业第一飞机设计研究院, 陕西 西安 710089
摘要:
舰载螺旋桨运输机布局紧凑,发动机短舱尺寸和质量较大,受螺旋桨滑流影响显著,飞行载荷问题突出,国内设计经验仍显不足。研究了某飞机发动机短舱的气动载荷、惯性载荷、陀螺力矩等设计方法及相关的设计规范约束与全机机动仿真技术。首先通过对规范的理解和选择确定短舱飞行载荷设计范围;建立机动仿真模型,获得短舱典型载荷工况;通过CFD方法获得有、无滑流影响的短舱压力分布数据;计算、筛选短舱的设计载荷与设计载荷工况;对比有/无滑流影响的气动载荷计算结果。研究表明:短舱的设计载荷工况出现在最大法向载荷系数(nZ)下的急剧俯仰机动、设计俯冲速度(VD)下的偏航机动、最大着舰质量下的发动机最大拉力等情况中;短舱侧向以气动载荷为主;法向以惯性载荷为主,极值情况下惯性力超过气动力4倍;某些机动/状态下,螺旋桨滑流可使短舱总气动力增大90%以上,靠近螺旋桨区域增幅更大。
关键词:    舰载螺旋桨运输机    发动机短舱    气动载荷    惯性载荷    设计规范    机动仿真    螺旋桨滑流    设计载荷工况   
Flight Load Design of Nacelle of Carrier-Based Propeller Transport Aircraft
MA Kaichao, TANG Changhong, ZHANG Jianye, NIU Xiaofei, FAN Qingzhi
AVIC the First Aircraft Institute, Xi'an 710089, China
Abstract:
The carrier-based propeller transport aircraft has a compact layout, where the large nacelle in size and weight is sensitive to propeller slipstream, and thus calls for sophisticated flight load design studies, which are still insufficient considering domestic experience. In detail, the design methods on aerodynamic load, inertial load, gyrostatic moment, as well as studies on design criteria and maneuver simulation technology are shown for a reference aircraft. The design range applied to this nacelle's flight load is firstly determined by understanding and selecting the design criteria. The typical loadcases of the nacelle are derived from aircraft maneuver simulation. The data of pressure distribution under a series of propeller slipstream strengths is obtained by CFD method. The Design Loads and Design Loadcases of the nacelle are calculated and selected. The effects of the propeller slipstream are compared in an example of the increment on aerodynamic load in a maneuver. The results show that the Design Loads of the nacelle are obtained from the abrupt pitching maneuver under the maximum normal load factor (Nz), the yawing maneuver under the Design Dive Speed(VD), and the maximum propeller pull under the maximum landing weight; the transverse loads of the nacelle are dominated by the aerodynamic load, and the normal loads are dominated by the inertial load, in which the inertial force exceeds the aerodynamic force by 4 times under the extreme circumstances. In some manoeuvres or status, the total aerodynamic force of the whole nacelle is increased by above 90% due to propeller slipstream; the front part of the nacelle which is close to the propeller sees a much bigger increment.
Key words:    carrier-based propeller transport aircraft    nacelle    aerodynamic load    inertial load    design criteria    maneuver simulation    propeller slipstream    design loadcases   
收稿日期: 2020-02-27     修回日期:
DOI: 10.1051/jnwpu/20203861249
通讯作者:     Email:
作者简介: 马凯超(1988-),航空工业第一飞机设计研究院工程师,主要从事飞机载荷设计与试飞技术研究。
相关功能
PDF(1582KB) Free
打印本文
把本文推荐给朋友
作者相关文章
马凯超  在本刊中的所有文章
唐长红  在本刊中的所有文章
张建叶  在本刊中的所有文章
牛孝飞  在本刊中的所有文章
范庆志  在本刊中的所有文章

参考文献:
[1] 马凯超, 徐岚玲, 张建叶. 舰载运输类飞机副翼飞行载荷设计[J].航空学报, 2019, 40(4):58-66 MA Kaichao, XU Lanling, ZHANG Jianye. Flight Load Design of Aileron of Carrier-Based Transport Category Aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(4):58-66(in Chinese)
[2] 郭润兆, 段卓毅, 李小卫. 舰载机机舰适配性体系研究[J]. 航空科学技术, 2014, 25(3):10-13 GUO Runzhao, DUAN Zhuoyi, LI Xiaowei. Study on Adaptation System of Carrier-Based Aircraft[J]. Aeronautical Science and Technology, 2014, 25(3):10-13(in Chinese)
[3] GOURE D. Enabling the Carrier Strike Group:the Role of the E-2 and C-2[M]. USA:Lexington Institute, 2011
[4] 张顺, 郭少楠, 庞辰, 等. 螺旋桨滑流对飞行器气动特性的影响机理研究[J]. 应用力学学报, 2017, 34(4):685-691 ZHANG Shun, GUO Shaonan, PANG Chen, et al. The Mechanism Research of the Effects of Slip Flow Effects on Aircrafts with Propeller[J]. Chinese Journal of Applied Mechanics, 2017, 34(4):685-691(in Chinese)
[5] 王仲燕. 飞机设计载荷计算指南[M]. 北京:航空航天工业部, 1990 WANG Zhongyan. Aircraft Loads Design Manual[M]. Beijing:Aeronautics and Astronautics Industry Ministry, 1990(in Chinese)
[6] 蒋祖国,田丁栓,周占廷. 飞机结构载荷/环境谱[M]. 北京:电子工业出版社, 2012 JIANG Zuguo, TIAN Dingshuan, ZHOU Zhanting. Load and Environment Spectrum on Aircraft Structure[M]. Beijing:Publishing House of Electronics Industry, 2012(in Chinese)
[7] HOWE D. Aircraft Loading and Structural Layout[M]. London:Professional Engineering Publishing Ltd, 2010
[8] WRIGHT J R, COOPER J E. Introduction to Aircraft Aeroelasticity and Loads[M]. Chichester, England:John Wiley & Sons Ltd, 2008
[9] 朱自强, 陈迎春, 王晓璐. 现代飞机的空气动力设计[M]. 北京:国防工业出版社, 2011 ZHU Ziqiang, CHEN Yingchun, WANG Xiaolu. Aerodynamic Design of Modern Aircraft[M]. Beijing:National Defense Industry Press, 2011(in Chinese)
[10] 中国民用航空局. 中国民用航空规章第25部[S]. CCAR-25-R4 Civil Aviation Administration of China. China Civil Aviation Regulations Part25[S]. CCAR-25-R4(in Chinese)
[11] 丁亚修. 民用飞机载荷计算研究与软件研制[D]. 西安:西北工业大学, 2003 DING Yaxiu. Research on the Load Calculation Methods and Software of Civil Aircraft[D]. Xi'an:Northwestern Polytechnical University, 2003(in Chinese)
[12] 埃特金. 大气飞行动力学[M]. 何植岱, 译. 北京:科学出版社, 1979 ETKIN B. Dynamics of Atmospheric flight[M]. HE Zhidai, Translator. Beijing:Science Press, 1979(in Chinese)
[13] 《飞机设计手册》总编委员会. 飞机设计手册第9册[M]. 北京:航空工业出版社, 2001 The Editorial Board of the Handbook of Aircraft Design. Handbook of Aircraft Design, Volume 9[M]. Beijing:Aviation Industry Press, 2001(in Chinese)
[14] LOMAX T L. Structural Loads Analysis for Commercial Transport Aircraft:Theory and Practice[M]. USA:AIAA Education Series, 1996