论文:2020,Vol:38,Issue(6):1235-1239
引用本文:
禹大宽, 乔学光, 王向宇, 张立松. 基于偏芯紫外曝光的光纤矢量弯曲传感器[J]. 西北工业大学学报
YU Dakuan, QIAO Xueguang, WANG Xiangyu, ZHANG Lisong. An Optical Fiber Sensor for Oriented Bending Based on Eccentric UV Exposure[J]. Northwestern polytechnical university

基于偏芯紫外曝光的光纤矢量弯曲传感器
禹大宽1, 乔学光2, 王向宇1, 张立松3
1. 西北工业大学 物理科学与技术学院 陕西省光信息技术重点实验室, 陕西 西安 710072;
2. 西北大学 物理学院, 陕西 西安 710069;
3. 西安石油大学 理学院 陕西省油气井测控技术重点实验室, 陕西 西安 710065
摘要:
提出并制作了一种基于偏芯紫外曝光的光纤矢量弯曲传感器。该传感器在已经制作好的迈克尔逊干涉结构上,利用偏芯曝光技术,使得光纤包层折射率的径向圆对称性发生变化,赋予干涉结构特殊的弯曲特性。同时分析了这种偏芯曝光技术包层模式非对称性的耦合的原理。实验监测了不同径向上,激发的包层模式的弯曲损耗。结果表明这种偏芯紫外曝光的迈克尔逊干涉结构具有一定的矢量弯曲的特性。在不同径向上,具有不同的弯曲灵敏度,且在受曝光一侧具有较高弯曲灵敏度,曲率灵敏度达到了5.5 dB·m。在未受曝光一侧具有较低弯曲灵敏度,曲率灵敏度为-1.31 dB·m。由于该传感器具有这种矢量弯曲的特性,可以很好地应用在油气田勘探开发、地震波矢量检测等领域。
关键词:    光纤传感器    迈克尔逊干涉    矢量弯曲    偏芯紫外曝光   
An Optical Fiber Sensor for Oriented Bending Based on Eccentric UV Exposure
YU Dakuan1, QIAO Xueguang2, WANG Xiangyu1, ZHANG Lisong3
1. Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China;
2. School of Physics, Northwest University, Xi'an 710069, China;
3. Shaanxi Key Laboratory of Measurement and Control Technology for Oil and Gas Wells, School of Science, Xi'an Shiyou University, Xi'an 710065, China
Abstract:
The optical fiber sensor for oriented bending based on eccentric UV exposure is fabricated. With the eccentric UV exposure on the ready-made Michelson interference fiber structure, the optical sensor gives the oriented bending characteristics by changing the radial circular symmetry of fiber cladding refractive indexes. The principle of the asymmetric process of the eccentric exposure to cladding mode are analyzed. The bending loss of the excited cladding mode in different radial directions is detected. The experimental results show that the Michelson interference has some oriented bending characteristics in the eccentric UV exposure process. There are different bending sensitivity in different radial directions. Furthermore, the bending sensitivity is higher on the exposed side and the curvature sensitivity is 5.5 dB·m. On the opposite side, the bending sensitivity is lower and the curvature sensitivity is -1.31 dB·m. With these oriented bending characteristics, the optical sensor can be applied to oil and gas exploration and development and to oriented seismic wave vector detection.
Key words:    optical fiber sensor    Michelson interference    oriented bending    eccentric UV exposure   
收稿日期: 2020-03-22     修回日期:
DOI: 10.1051/jnwpu/20203861235
基金项目: 国家自然科学基金(61735014,61927812)与陕西省教育厅科研项目(17JS105,18JS093)资助
通讯作者:     Email:
作者简介: 禹大宽(1980-),西北工业大学博士研究生,主要从事光纤光栅制备及应用研究。
相关功能
PDF(1998KB) Free
打印本文
把本文推荐给朋友
作者相关文章
禹大宽  在本刊中的所有文章
乔学光  在本刊中的所有文章
王向宇  在本刊中的所有文章
张立松  在本刊中的所有文章

参考文献:
[1] QIAO Xueguang, SHAO Zhihua, BAO Weijia, et al. Fiber Bragg Grating Sensors for the Oil Industry[J]. Sensors, 2017, 17(3):1-34
[2] MARTINEZ-RIOS A, TORRES-GOMEZ I, ANZUETO-SANCHEZ G, et al. Asymmetric Mode Coupling in Arc-Induced Long-Period Fiber Gratings[J]. Optics Communications, 2016, 364:37-43
[3] PIOTR Kisaa, DAMINA Harasim, JANUSU Mroczka. Temperature-Insensitive Simultaneous Rotation and Displacement (Bending) Sensor Based on Tilted Fiber Bragg Grating[J]. Optics Express, 2016, 24(26):29922-29929
[4] KONG Jing, ZHOU Ai. Zhou, CHENG Cheng. Two-Axis Bending Sensor Based on Cascaded Eccentric Core Fiber Bragg Gratings[J]. IEEE Photonics Technology Letters, 2016, 28(11):1237-1240
[5] VILLATOR J, NEWKIRK A V, ANTONIOLOPEZ E, et al. Ultrasensitive Vector Bending Sensor Based on Multicore Optical Fiber[J]. Optics Letters, 2016, 41(4):832-835
[6] YANG Tingting, QIAO Xueguang, RONG Qiangzhou, et al. Orientation-Dependent Displacement Sensor Using an Inner Cladding Fiber Bragg Grating[J]. Sensors, 2016, 16(9):1-7
[7] DONG Xiaoyi, ZHANG Hao, LIU Bo, et al. Tilted Fiber Bragg Gratings:Principle and Sensing Applications[J]. Photonic Sensors, 2011, 1(1):6-30
[8] ZHANG Hailiang, WU Zhifang, SHUM Perryping, et al. Fiber Bragg Gratings in Heterogeneous Multicore Fiber for Directional Bending Sensing[J]. Journal of Optics, 2016, 18(8):085705
[9] BARRERA David, GASULLA Ivana, SALES Salvador. Multipoint Two-Dimensional Curvature Optical Fiber Sensor Based on a Nontwisted Homogeneous Four-Core Fiber[J]. Journal of Lightwave Technology, 2015, 33(12):2445-2450
[10] FENG Diyi, QIAO Xueguang, ALBERT Jacques. Off-Axis Ultraviolet-Written Fiber Bragg Gratings for Directional Bending Measurements[J]. Optics Letters, 2016, 41(6):1201-1204
[11] ZHAO Yunhe, WANG Changle, YIN Guolu, et al. Simultaneous Directional Curvature and Temperature Sensor Based on a Tilted Few-Mode Fiber Bragg Grating[J]. Applied Optics, 2018, 57(7):1671-1678
[12] SAFFARI Pouneh, ALLSOP Thomas, ADEBAYO Adedotum, et al. Long Period Grating in Multicore Optical Fiber:an Ultra-Sensitive Vector Bending Sensor for Low Curvatures[J]. Optics Letters, 2014, 39(12):3508-3511
[13] RONG Qiangzhou, QIAO Xueguang, GUO Tuan, et al. Orientation-Dependant Inclinometer Based on Intermodal Coupling of Two-LP-Modes in a Polarization-Maintaining Photonic Crystal Fiber[J]. Optics Express, 2013, 21(15):17576-17585
[14] TONG Zhengrong, GUO Yang, YANG Xiufeng, et al. Simultaneous Measurement of Temperature and Refractive Index Using a Fiber Bragg Grating and a Multimode Fiber[J]. Applied Mechanics and Materials, 2011, 130(134):4053-4056
[15] GU Bobo, YIN Mingjie, ZHANG Aping, et al. Optical Fiber Relative Humidity Sensor Based on FBG Incorporated Thin-Core Fiber Modal Interferometer[J]. Optics Express, 2011, 19(5):4140-4146
[16] CAO Ye, LIU Huiying, TONG Zhengrong, et al. Simultaneous Measurement of Temperature and Refractive Index Based on a Mach-Zehnder Interferometer Cascaded with a Fiber Bragg Grating[J]. Optics Communications, 2015, 342:180-183