论文:2020,Vol:38,Issue(5):1054-1062
引用本文:
段逊, 岳晓奎. 大面质比太阳帆航天器Lissajous轨道转移研究[J]. 西北工业大学学报
DUAN Xun, YUE Xiaokui. Research on the Lissajous Trajectory Transfer of Large Area Mass Ratio Solar Sail Spacecraft[J]. Northwestern polytechnical university

大面质比太阳帆航天器Lissajous轨道转移研究
段逊, 岳晓奎
西北工业大学 航天学院, 陕西 西安 710072
摘要:
考虑在Lissajous轨道上工作的太阳帆航天器,会受到地球阴影或太阳风等影响,造成航天器无法工作的情况,利用太阳光压作为推力提前进行Lissajous轨道转移。由于光压参数(锥角、钟角和光压因子)会改变平动点位置,利用新旧平动点流形拼接的方法,让逃逸航天器转移到新Lissajous轨道上,实现日地L2点的拟周期轨道转移。仿真结果证明除了改变锥角、光压因子外,钟角也能实现轨道转移,且光压因子对拟周期轨道的影响会比另外两项大。文章创新点在于首次利用三维人工平动点实现异宿Lissajous轨道转移,为太阳帆航天器在日地平动点周期轨道的转移以及躲避地球阴影等方面提供了参考。
关键词:    人工平动点    太阳帆航天器    太阳光压    周期轨道转移   
Research on the Lissajous Trajectory Transfer of Large Area Mass Ratio Solar Sail Spacecraft
DUAN Xun, YUE Xiaokui
School of Astronautics, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
Considering that the solar sail spacecraft working in the Lissajous orbit will be affected by the shadow of the earth or the solar wind, which sometime makes the spacecraft unable to work, we try to use the solar light pressure as the thrust to carry out the Lissajous orbit transfer in advance. Because the solar pressure parameters(cone angle, clock angle and solar pressure factor) will change the position of the libration points, we propose the idea of splicing the old and new libration point manifolds to transfer the escape spacecraft to the new Lissajous orbit to achieve orbit maintenance. The simulation results show that besides changing the cone angle and the solar pressure factor, the clock angle can also achieve orbit transfer, and the influence of the solar pressure factor on the periodic orbit is greater than the other two. This study provides a reference for the solar sail spacecraft in the aspects of periodic orbit transfer, orbit maintenance and avoidance of the earth's shadows.
Key words:    artificial libration point    solar sail spacecraft    solar pressure    periodic orbit transfer    simulation    Lissajous orbit   
收稿日期: 2019-11-04     修回日期:
DOI: 10.1051/jnwpu/20203851054
通讯作者:     Email:
作者简介: 段逊(1990-),西北工业大学博士研究生,主要从事太阳帆航天器轨道研究。
相关功能
PDF(2637KB) Free
打印本文
把本文推荐给朋友
作者相关文章
段逊  在本刊中的所有文章
岳晓奎  在本刊中的所有文章

参考文献:
[1] MCINNES C R. Solar Sailing:Technology, Dynamics and Mission Applications[J]. Journal of Guidance Control & Dynamics, 2004, 23(4):768-768
[2] MCINNES C R. Solar Sail Mission Applications for Non-Keplerian Orbits[J]. Acta Astronautica, 1999, 45(4/5/6/7/8/9):567-575
[3] SZEBEHELY V, SINGER S F. Theory of Orbits:The Restricted Problem of Three Bodies[J]. Physics Today, 1968, 21(11):89-91
[4] SHIROBOKOV M, TROFIMOV S, OVCHINNIKOV M. Survey of Station-Keeping Techniques for Libration Point Orbits[J]. Journal of Guidance, Control, and Dynamics, 2017, 16:1-21
[5] 淡雪, 岳晓奎. 基于自适应积分的太阳同步轨道发射优化设计[J]. 西北工业大学学报, 2013, 31(5):701-705 DAN Xue, YUE Xiaokui. Optimization of Launch Trajectory for SSD(Sun Synchroas Orbit) Based on Adaptive Transfer Orbit[J]. Journal of Northwestern Polytechnical University, 2013, 31(5):701-705(in Chinese)
[6] ROBERTS C E. Long Term Missions at the Sun-Earth Libration Point L1:ACE, SOHO, and WIND[C]//AAS/AIAA Astrodynamics Specialist Conference, Girdwood, Alaska, 2011
[7] SPERGEL D N, BEAN R, DORÉ O, et al. Three-Year Wilkinson Microwave Anisotropy Probe(WMAP) Observations:Implications for Cosmology[J]. The Astrophysical Journal Supplement Series, 2007, 170(2):377
[8] WILLIAMS K E, LEWIS G D, WILSON R S, et al. Genesis Earth Return:Refined Strategies and Flight Experience[J]. Advances in the Astronautical Sciences, 2005, 120:249-268
[9] FOLTA D C, PAVLAK T A, HAAPALA A F, et al. Earth-Moon Libration Point Orbit Stationkeeping:Theory, Modeling, and Operations[J]. Acta Astronautica, 2014, 94(1):421-433
[10] ROBERTS C, CASE S, REAGOSO J. Lissajous Orbit Control for the Deep Space Climate Observatory Sun-Earth L1 Libration Point Mission[C]//AAS 15-611, AAS/AIAA Astorodynamics Specialist Conference, Vail, Colorado, 2015
[11] FARQUHAR R. The flight of ISEE-3/ICE-Origins, Mission History, and a Legacy[C]//AIAA/AAS Astrodynamics Specialist Conference and Exhibit, 1998:4464
[12] FRAYER D T. Tools for the Herschel Space Observatory:observation Planning and Data Processing[J]. American Astromilical Society Meeting Abstracts, Bulletin of the American Astronomical Society, 2007, 39:108
[13] ADAM R, ADE P A R, AGHANIM N, et al. Planck 2015 Results-I. Overview of Products and Scientific Results[J]. Astronomy & Astrophysics, 2016, 594:A1
[14] RENK F, LANDGRAF M. Gaia:Trajectory Design with Tightening Constraints[C]//Proceedings of the 24th International Symposium on Space Flight Mechanics, Laurel, MD, 2014
[15] RUDOLPH A. LISA Pathfinder Launch and Early Operations Phase-in-Orbit Experience[C]//14th International Conference on Space Operations, 2016:2412
[16] DONG G, FAN M, LI P, et al. Chang'E-2 Lunar Probe Orbit Determination and Support[J]. J Astron, 2013, 34(4):457-463
[17] LI F, YE M, YAN J, et al. A Simulation of the Four-Way Lunar Lander-Orbiter Tracking Mode for the Chang'E-5 Mission[J]. Advances in Space Research, 2016, 57(11):2376-2384
[18] TSUDA Y, MORI O, FUNASE R, et al. Flight Status of IKAROS Deep Space Solar Sail Demonstrator[J]. Acta Astronautica, 2011, 69(9/10):833-840
[19] COLOMBO G. The Stabilization of an Artificial Satellite at the Inferior Conjunction Point of the Earth-Moon System[J]. Journal of the Astronautical Sciences, 2001, 6(1):213
[20] EULER E A, YU E Y. Optimal Station-Keeping at Collinear Points[J]. Journal of Spacecraft and Rockets, 1971, 8(5):513-516
[21] BREAKWELL J V. Investigation of Halo Satellite Orbit Control[R]. NASA, CA, Tech-Rep, CR-132850, 1973
[22] FARQUHAR R W. Station-Keeping in the Vicinity of Collinear Libration Points with an Application to a Lunar Communications Problem[C]//AAS Science and Technolgy Series:Space Fliyht Mechanics Specialist Symposium, 1966, 11:519-535
[23] MCINNES C R, MCDONALD A J C, SIMMONS J F L, et al. Solar Sail Parking in Restricted Three-Body Systems[J]. Journal of Guidance Control & Dynamics, 2012, 17(2):399-406
[24] FARRÉS A, ÀNGEL Jorba. Artificial Equilibria in the RTBP for a Solar Sail and Applications[M]. Astrodynamics Network AstroNet-Ⅱ. 2016
[25] SOLDINI S, MASDEMONT J J, GÓMEZ G. Dynamics of Solar Radiation Pressure-Assisted Maneuvers between Lissajous Orbits[J]. Journal of Guidance, Control, and Dynamics, 2019, 42(4):769-793
[26] JORBA-CUSCÓ M, FARRÉS A, JORBA À. On the Stabilizing Effect of Solar Radiation Pressure in the Earth-Moon System[J]. Advances in Space Research, 2020, 23(7):406-410
[27] FARRÉS A, HEILIGERS J, MIGUEL N. Road Map to L4/L5 with a Solar Sail[J]. Aerospace Science and Technology, 2019, 95:105458
[28] WANG W, BAOYIN H, MENGALI G, et al. Solar Sail Cooperative Formation Flying around L2-Type Artificial Equilibrium Points[J]. Acta Astronautica, 2020, 169:224-239
[29] GUZZETTI D, SOOD R, CHAPPAZ L, et al. Stationkeeping Analysis for Solar Sailing the L4 Region of Binary Asteroid Systems[J]. Journal of Guidance, Control, and Dynamics, 2019, 42(6):1306-1318
[30] 罗超, 郑建华, 高东. 太阳帆航天器的轨道动力学和轨道控制研究[J]. 宇航学报, 2009, 30(6):2111-2117 LUO Chao, ZHENG Jianhun, GAO Dong. Study on Orhit Dynamics and Control of Sorlar-Sail Spacecraft[J]. Journal of Astronautics, 2009, 30(6):2111-2117(in Chinese)
[31] 张辉. 太阳帆航天器轨道动力学与控制研究[D]. 合肥:中国科学技术大学, 2014 ZHANG Hui. Orbit Dynamics and Control of Solar Sail Spacecraft[D]. Hefei:University of Science and Technology of China, 2014(in Chinese)
[32] 朱敏. 太阳帆航天器动力学与控制研究[D]. 合肥:中国科学技术大学,2016 ZHU Min. Dynamics and Control of Solar Sail Spacecraft[D]. Hefei:University of Science and Technogy of China, 2016(in Chinese)
[33] 孙冲, 袁建平, 方群, 等. 采用虚拟引力场的太阳帆/电推进混合推力机动轨道设计[J]. 西北工业大学学报, 2018, 36(4):618-626 SUN Chong, YUAN Jianping, FANG Qun, et al. Hybrid Lon Thrust Propulsion Trajectory Design and Optimization Using Virtual Aravity Method[J]. Journal of Northwestern Polytecnical University, 2018, 36(4):618-626(in Chinese)