论文:2020,Vol:38,Issue(5):944-951
引用本文:
王磊, 陈克安, 胥健, 田旭华. 分布式FxLMS算法的收敛特性分析[J]. 西北工业大学学报
WANG Lei, CHEN Kean, XU Jian, TIAN Xuhua. Analyzing Convergence of Distributed FxLMS Algorithm[J]. Northwestern polytechnical university

分布式FxLMS算法的收敛特性分析
王磊, 陈克安, 胥健, 田旭华
西北工业大学 航海学院, 陕西 西安 710072
摘要:
基于声学传感器网络的分布式FxLMS算法可以解决大规模有源噪声控制系统带来的运算量和复杂度剧增的问题。首先对分布式算法进行了理论推导。在基于传感器网络的ANC过程中,通过各节点之间权系数的实时通信代替了部分权系数的迭代。分析了算法平均以及均方意义下的收敛特性,并利用仿真进行了验证。最后,比较了不同算法的降噪效果。结果表明,在减少运算量的基础上,分布式算法能够获得与集中式ANC系统一致的性能。
关键词:    有源噪声控制    分布式FxLMS    声传感器网络   
Analyzing Convergence of Distributed FxLMS Algorithm
WANG Lei, CHEN Kean, XU Jian, TIAN Xuhua
School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
The distributed FxLMS algorithm based on acoustic sensor networks can solve the problem of the increased computational complexity caused by a large-scale active noise control (ANC) system. Firstly, the distributed algorithm is deduced theoretically. In the ANC process based on sensor networks, the iteration of partial weight coefficients is replaced by the real-time communication of weight coefficients among nodes. Then the convergence characteristics of the distributed algorithm in its mean and mean square senses are analyzed and verified with simulation. Finally, the noise reduction effects of different algorithms are compared. The results show that the distributed algorithm, with its computational complexity reduced, can achieve the same noise reduction effects as the centralized ANC system.
Key words:    active noise control    computational complexity    distributed FxLMS algorithm    acoustic sensor networks   
收稿日期: 2019-06-27     修回日期:
DOI: 10.1051/jnwpu/20203850944
基金项目: 电网环境保护国家重点实验室开放基金和国家自然科学基金(11974287)资助
通讯作者:     Email:
作者简介: 王磊(1994-),西北工业大学博士研究生,主要从事有源噪声控制研究。
相关功能
PDF(1927KB) Free
打印本文
把本文推荐给朋友
作者相关文章
王磊  在本刊中的所有文章
陈克安  在本刊中的所有文章
胥健  在本刊中的所有文章
田旭华  在本刊中的所有文章

参考文献:
[1] 陈克安. 有源噪声控制[M]. 北京:国防工业出版社, 2014:7-10 CHEN Kean. Active Noise Control[M]. Beijing:Aotional Defence Indeustny Press, 2014:7-10(in Chinese)
[2] JOHANSSON S, CLAESSON I, NORDEBO S, et al. Evaluation of Multiple Reference Active Noise Control Algorithms on Dornier 328 Aircraft Data[J]. IEEE Trans on Speech and Audio Processing, 1999, 7(4):473-477
[3] ELLIOTT S J, BOUCHER C C. Interaction between Multiple Feedforward Active Control Systems[J]. IEEE Trans on Speech and Audio Processing, 1994, 2(4):521-530
[4] GEORGE N V, PANDA G. A Particle-Swarm-Optimization-Based Decentralized Nonlinear Active Noise Control System[J]. IEEE Trans on Instrumentation and Measurement, 2012, 61(12):3378-3386
[5] LEBOUCHER E, MICHEAU P, BERRY A, et al. A Stability Analysis of a Decentralized Adaptive Feedback Active Control System of Sinusoidal Sound in Free Space[J]. The Journal of the Acoustical Society of America, 2002, 111(1):189-199
[6] FERRER M, DE DIEGO M, PINERO G, et al. Active Noise Control over Adaptive Distributed Networks[J]. Signal Processing, 2015, 107:82-95
[7] FERRER M, GONZALEZ A, DE DIEGO M, et al. Distributed Affine Projection Algorithm over Acoustically Coupled Sensor Networks[J]. IEEE Trans on Signal Processing, 2017, 65(24):6423-6434
[8] ANTONANZAS C, FERRER M, DE DIEGO M, et al. Collaborative Method Based on the Acoustical Interaction Effects on Active Noise Control Systems over Distributed Networks[C]//IEEE International Conference on Acoustics, Speech and Signal Processing, 2017:606-610
[9] SONG J, PARK P. A Diffusion Strategy for the Multichannel Active Noise Control System in Distributed Network[C]//International Conference on Computational Science and Computational Intelligence, 2016:659-664
[10] KUKDE R, PANDA G, MANKANDAN M S. On Distributed Non-Linear Active Noise Control Using Diffusion Collaborative Learning Strategy[J]. IET Signal Processing, 2018, 12(4):410-421
[11] CHEN J, SAYED A. Diffusion Adaptation Strategies for Distributed Optimization and Learning over Networks[J]. IEEE Trans on Signal Processing, 2012, 60(8):4289-4305
[12] ARDEKANI I T, ABDULLA W H. On the Convergence of Real-Time Active Noise Control Systems[J]. Signal Processing, 2011, 91:1262-1274