论文:2020,Vol:38,Issue(4):715-722
引用本文:
卢晓东, 崔涛, 顾嘉耀. 非线性时变相似性理论下的空间拦截仿真研究[J]. 西北工业大学学报
LU Xiaodong, CUI Tao, GU Jiayao. Research for Space Interception Simulation under Nonlinear Time-Varied Similarity[J]. Northwestern polytechnical university

非线性时变相似性理论下的空间拦截仿真研究
卢晓东, 崔涛, 顾嘉耀
西北工业大学 精确制导与控制研究所, 陕西 西安 710072
摘要:
针对空间飞行器高速拦截过程地面物理仿真中,采用定常相似性理论难以在有限空间内实现高精度物理仿真的问题,提出了一种非线性时变相似性映射(NTVS)体系解决了大时空缩比系数与运动高精度模拟的矛盾。首先基于相似性量纲法推导了高速拦截过程的相似性准则,并分析线性定常相似映射(LCS)的不足。然后引入参考运动建立了一种时空缩比系数随时间自适应变化的相似性体系,并证明了该方法能够保证相似一致性。最后其通过运动的线性分离与独立映射方式解决了纵向高速接近运动与侧向小机动在同一物理平台上的仿真难题。仿真结果表明该方法相比于LCS能以较高精度完整再现高速拦截运动。
关键词:    时变映射    时空相似性    空间拦截    地面仿真   
Research for Space Interception Simulation under Nonlinear Time-Varied Similarity
LU Xiaodong, CUI Tao, GU Jiayao
Institute of Precision Guidance and Control, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
A nonlinear time-varied similarity(NTVS) simulation algorithm is proposed to solve the problem that the process of space interception is intractable to simulate with high precision in limited platform under the linear constant similarity(LCS). Firstly, the similarity criterions based on the dimensional analysis are given in the simulation of the interception motion at high-speed, and the disadvantage of LCS is analyzed. Then, the reference motion is introduced to establish a time-varied spatio-temporal transform system which scale factors are self-adaptive with time, and the method is proved to satisfy the similarity consistency. Finally the way that linear separation and independent mapping solve the problem that the large magnitude uniform motion in approaching directions and small magnitude overload motion in lateral directions are simulated in a limited ground platform. The results show that the NTVS can simulate the whole process of interception and perform better in accuracy comparing with that via LCS.
Key words:    time-varied transform    spatio-temporal similarity    space interception    ground simulation   
收稿日期: 2019-10-09     修回日期:
DOI: 10.1051/jnwpu/20203840715
基金项目: 陕西省自然科学基金(2019JM-321)与中央高校基本科研业务费专项资金(3102019HTXS008)资助
通讯作者:     Email:
作者简介: 卢晓东(1978-),西北工业大学副教授,主要从事飞行器半实物仿真、协同探测和协同制导研究。
相关功能
PDF(2441KB) Free
打印本文
把本文推荐给朋友
作者相关文章
卢晓东  在本刊中的所有文章
崔涛  在本刊中的所有文章
顾嘉耀  在本刊中的所有文章

参考文献:
[1] LI S J, LEI H M, SHAO L, et al. Multiple Model Tracking for Hypersonic Gliding Vehicles with Aerodynamic Modeling and Analysis[J]. IEEE Access, 2019, 7:28011-28018
[2] SHI L, ZHU Z H, Two-Dimensional Continuous Terminal Interception Guidance Law with Predefined Convergence[J]. IEEE Access, 2018, 6:46771-46780
[3] KAWANO I, KASAI T, MOKUNO M, et al. Result of Autonomous Rendezvous and Docking Experiment of Engineering Test Satellite VⅡ[J]. Journal of Spacecraft and Rocket, 2001, 38(1):105-111
[4] NIKHIL V V, ABHILASH N, NIKETH P. The 2.5 s Microgravity Drop Tower at National Centre for Combustion Research and Development(NCCRD)[J]. Microgravity Science and Technology, 2018, 30(5):663-673
[5] MENON C, ABOUNDAN A, COCUZZA S, et al. Free-Flying Robot Tested on Parabolic Flight:Kinematic Control[J]. Journal of Guidance, Control, and Dynamics, 2005, 28(4). 623-630
[6] SUN C, CHEN S Y, YUAN J P, et al. A Six-DOF Buoyancy Tank Microgravity Test Bed with Active Drag Compensation[J]. Microgravity Science and Technology, 2017, 29(5):391-402
[7] SMITHANIK J R, ATKINS E M, SANNER R M. Visual Positioning System for an Underwater Space Simulation Environment[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(4):858-869
[8] BEVILACQUA R, ROMANO M, CURTI F. Guidance Navigation and Control for Autonomous Multiple Spacecraft Assembly:Analysis and Experimentations[J]. International Journal of Aerospace Engineering, 2011, 2011:342-351
[9] GUGLIERI G, MAROGLIO F, PELLEGRINO P. Design and Development of Guidance Navigation and Control Algorithms for Spacecraft Rendezvous and Docking Experimentation[J]. Acta Astronautica, 2014, 94(1):395-408
[10] RYBUS T, SEWERYN K. New Planar Air-Bearing Microgravity Simulator for Verification of Space Robotics Numerical Simulations and Control Algorithms[C]//12th ESA Symposium on Advanced Space Technologies in Robotics and Automation, Noordwijk, Holland, 2013
[11] 何兆伟, 史鹏, 葛冰, 等. 航天器地面试验的相似性分析方法[J]. 北京航空航天大学学报, 2012, 38(4):502-508 HE Zhaowei, SHI Peng, GE Bing, et al. Similitude Investigation for Ground Experiment of Spacecraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(4):502-508(in Chinese)
[12] 孙施浩, 赵林, 贾英民. 空间合作目标运动再现的相似性设计方法研究[J]. 宇航学报, 2014, 35(7):802-810 SUN Shihao, ZHAO Lin, JIA Yingmin. Similitude Design Method for Motion Reconstruction of Space Cooperative Vehicles[J]. Journal of Astronautics, 2014, 35(7):802-810(in Chinese)
[13] 齐彧, 孙俊, 师鹏, 等. 航天器相对运动地面动力学实验研究[J]. 北京航空航天大学学报, 2016, 42(10):2118-2119 QI Yu, SUN Jun, SHI Peng, et al. Research for Ground-Based Astrodynamical Experiment for Spacecraft Relative Motion[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(10):2118-2119(in Chinese)
[14] 胡冬冬, 刘晓明, 张绍芳, 等. 2016年国外超高声速飞行器技术发展综述[J]. 战术导弹技术, 2017(1):28-33 HU Dongdong, LIU Xiaoming, ZHANG Shaofang, et al. Review of Hypersonic Technologies Progresses Abroad in 2016[J]. Tactical Missile Technology, 2017(1):28-33(in Chinese)
[15] 张灏龙, 廖馨, 李彬, 等. 基于气浮平台的飞行器性能验证技术研究[J]. 系统仿真学报, 2018, 30(10):3739-3745 ZHANG Haolong, LIAO Xin, LI Bin, et al. Research on Performance Validation of Aircraft Based on Air-Table[J]. Journal of System Simulation, 2018, 30(10):3739-3745(in Chinese)
[16] 史鑫. 基于平台的攻防对抗物理仿真系统方案设计及分析[D]. 哈尔滨:哈尔滨工业大学, 2012 SHI Xin. Design and Analysis of the Attack and Defense Ground Physical Simulation System[D]. Harbin:Harbin Institute of Technology, 2012(in Chinese)