论文:2020,Vol:38,Issue(4):685-694
引用本文:
宋翔, 余培汛, 白俊强, 韩啸, 彭嘉辉. 基于Hanson噪声模型的螺旋桨气动与噪声优化设计[J]. 西北工业大学学报
SONG Xiang, YU Peixun, BAI Junqiang, HAN Xiao, PENG Jiahui. Aerodynamic and Aeroacoustic Optimization of Propeller Based on Hanson Noise Model[J]. Northwestern polytechnical university

基于Hanson噪声模型的螺旋桨气动与噪声优化设计
宋翔, 余培汛, 白俊强, 韩啸, 彭嘉辉
西北工业大学 航空学院, 陕西 西安 710072
摘要:
针对螺旋桨气动与噪声多目标优化设计问题,采用基于非均匀有理B样条的自由曲面变形方法对全桨叶进行三维几何变形。为节省优化计算成本,将RANS方法和Hanson模型相结合预测纯音噪声,其预测精度与耦合URANS方法的FW-H方程相当。在此基础上,采用Kriging代理模型与非支配关系排序遗传算法进行优化搜索,建立了螺旋桨气动与噪声多目标优化设计框架。采用该框架对某民航客机螺旋桨进行优化设计,优化以叶片不同展向站位的翼型扭转角和弦长作为设计变量。相比基础桨叶,在功率不增加的情形下,巡航构型风洞试验状态的轴向监测点噪声值最大下降约0.25 dB,在功率略有增加的情形下,噪声降低约1 dB。
关键词:    自由曲面变形方法(FFD)    多重参考坐标系(MRF)    Hanson噪声模型    非支配关系排序算法(NSGAII)   
Aerodynamic and Aeroacoustic Optimization of Propeller Based on Hanson Noise Model
SONG Xiang, YU Peixun, BAI Junqiang, HAN Xiao, PENG Jiahui
School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
Aiming at the multi-objective optimization design problem of propeller aerodynamics and noise, the three-dimensional geometric deformation of the whole blade is carried out by the free-form surface deformation method based on non-uniform rational B-spline. In order to save the calculation cost of optimization, the RANS method and the Hanson model are combined to predict pure tone noise, and the prediction accuracy is comparable to the accuracy of the FW-H equation coupled with URANS method. Kriging surrogate model and non-dominated sorting genetic algorithm are used to search for optimal value, and a multi-objective optimization design framework for propeller aerodynamics and noise is established. This method is used to optimize the blade shape of a passenger airliner propeller, and the airfoil torsion angle and chord length of different positions are optimized as design variables. Compared with the basic blade, the noise value of the axial monitoring point near the cruise configuration under the wind tunnel experiment condition is reduced by about 0.25 dB at the same time as the power is reduced. In the case of a slight increase in power, the noise is reduced by about 1 dB.
Key words:    free-form surface deformation method (NURBS-FFD)    multiple reference frame (MRF)    Hanson noise model    non-dominated sorting algorithm (NSGAII)    Kriging surrogate model   
收稿日期: 2019-09-02     修回日期:
DOI: 10.1051/jnwpu/20203840685
通讯作者: 余培汛(1986-),西北工业大学助理研究员,主要从事飞行器设计研究。E-mail:yupeixun@nwpu.edu.cn     Email:yupeixun@nwpu.edu.cn
作者简介: 宋翔(1995-),西北工业大学硕士研究生,主要从事气动噪声研究。
相关功能
PDF(3020KB) Free
打印本文
把本文推荐给朋友
作者相关文章
宋翔  在本刊中的所有文章
余培汛  在本刊中的所有文章
白俊强  在本刊中的所有文章
韩啸  在本刊中的所有文章
彭嘉辉  在本刊中的所有文章

参考文献:
[1] PAGANO A, FREDERICO L, BARBARINO M, et al. Multi-Objective Aeroacoustic Optimization of an Aircraft Propeller[C]//12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 2008
[2] MARINUS B G, ROGER M, VAN DEN BRAEMBUSSCHE R A, et al. Multidisciplinary Optimization of Propeller Blades:Focus on the Aeroacoustic Results[C]//17th AIAA/CEAS Aeroacoustics Conference, 2011
[3] CANARD-CARUANA S, LE TALLEC C, BEAUMIER P, et al. ANIBAL:a New Aero-Acoustic Optimized Propeller for Light Aircraft Applications[C]//19th AIAA Aviation Technology, Integration and Operations Conference and Aircraft Noise and Emisions Reduction Symposium, 2010
[4] 王博,招启军,徐国华. 悬停状态直升机桨叶扭转分布的优化数值计算[J]. 航空学报, 2012,33(7):1163-1172 WANG Bo, ZHAO Qijun, XU Guohua. Numerical Optimization of Helicopter Rotor Twist Distribution in Hover[J]. Acta Aeronautica et Astronautica Sinica, 2012,33(7):1163-1172(in Chinese)
[5] 招启军,蒋霜,李鹏, 等. 基于CFD方法的倾转旋翼/螺旋桨气动优化分析[J]. 空气动力学报,2017,35(4):544-553 ZHAO Qijun, JIANG Shuang, LI Peng, et al. Aerodynamic Optimization Analyses of Tiltrotor/Propeller Based on CFD Method[J]. Acta Aerodynamic Sinica, 2017,35(4):544-553(in Chinese)
[6] 郭旺柳,宋文萍,许建华, 等. 旋翼桨尖气动/降噪综合优化设计研究[J]. 西北工业大学学报,2012,30(1):73-79 GUO Wangliu, SONG Wenpeng, XU Jianhua, et al. An Effective Aerodynamic/Acoustic Optimization of Blade Tip Planform for Helicopter Rotors[J]. Journal of Northwestern Polytechnical University, 2012,30(1):73-79(in Chinese)
[7] 朱正,招启军. 低HSI噪声旋翼桨尖外形优化设计方法[J]. 航空学报,2015,36(5):1442-1452 ZHU Zheng, ZHAO Qijun. Optimization Design Method for Rotor Blade-Tip Shape with Low HIS Noise Character[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(5):1442-1452(in Chinese)
[8] GUTIN L. On the Sound Field of a Rotating Propeller[R]. NACATM-1195, 1948
[9] DEMING A F. Noise from Propellers with Symmetrical Sections at Zero Blade Angle[R]. NACA TN-679, 1937
[10] GARRICK L E, WATKINS. A Theoretical Study of the Effect of Forward Speed on the Free-Space Sound-Pressure Field around Propellers[R]. NACA Report 1198, 1953
[11] ARNOLDI R A. Propeller Noise Caused by Blade Thickness[R]. United Aircraft Corporation Research Department Report R-0896-1, 1956
[12] ARNOLDI R A. Near Field Computations of Propeller Blade Thickness Noise[R]. United Aircraft Corporation Research Department Report R-0896-2, 1956
[13] BARRY F W, MAGLIOZZI B. Noise Detectability Prediction Method for Low Tip Speed Propellers[R]. Hamilton Standard Division TR-71-37, 1971
[14] HANSON D B. Helicoidal Surface Theory for Harmonic Noise of Propellers in the Far Field[J]. AIAA Journal, 1980, 18(10):1213-1220
[15] HANSON D B. Sound from a Propeller at Angle of Attack:a New Theoretical Viewpoint[J]. Proceedings of the Royal Society of London. Series A:Mathematical and Physical Sciences, 1995, 449(1936):315-328
[16] KOTWICZ H M T, FESZTY D, MESLIOUI S A, et al. Applicability of Early Acoustic Theory for Modern Propeller Design[C]//23rd AIAA/CEAS Aeroacoustics Conference, 2017
[17] KOTWICZ H M T, FESZTY D, MESLIOUI S A, et al. Evaluation of Acoustic Frequency Methods for the Prediction of Propeller Noise[J]. AIAA Journal, 2019, 57(6):2465-2478
[18] SEDERBERG T W, PARRY S R. Free-Form Deformation of Solid Geometric Models[C]//Proceedings of the 13th Annual Conference on Computer Graphics and Interactive Techniques, 1986:151-160
[19] LAMOUSIN H J, WAGGENSPACK JR W N. NURBS-Based Free-Form Deformations[J]. IEEE Computer Graphics and Applications, 1994(6):59-65
[20] BOER A D, VON DER SCHOOT M S, BIJL H, Mesh Deformation Based on Radial Basis Function Interpolation[J]. Computers & Structures, 2007, 85(11):784-795
[21] 徐家宽,白俊强,黄江涛,等. 考虑螺旋桨滑流影响的机翼气动优化设计研究[J]. 航空学报,2014,35(11):2910-2920 XU Jiakuan, BAI Junqiang, HUANG Jiangtao, et al. Study of Aerodynamic Optimization Design of Wing under the Interaction of Propeller Slipstream[J]. Acta Aeronauticaet Astronautica Sinica, 2014,35(11):2910-2920(in Chinese)
[22] HANSON D B, PARZYCH D J. Theory for Noise of Propellers in Angular Inflow with Parametric Studies and Experimental Verification[R]. NASA CR-1993-4499, 1993
[23] HAMBREY J. Computational Aeroacoustic Prediction of Propeller Noise Using Grid-Based and Grid-Free CFD Methods[D]. Ottawa, Carleton University, 2016
[24] SRINIVAS N, DEB K. Multi-Objective Function Optimization Using Non-Dominated Sorting Genetic Algorithms[J]. IEEE Trans on Evolutionary Computation, 1995, 2(3):221-248
[25] DEB K, PRATAP A, AGARWAL S, et al. A Fast and Elitist Multiobjective Genetic Algorithm:NSGA-Ⅱ[J]. IEEE Trans on Evolutionary Computation, 2002, 6(2):182-197
[26] HANSON D B. Influence of Propeller Design Parameters on Far-Field Harmonic Noise in Forward Flight[J]. AIAA Journal, 1980, 18(11):1313-1319