论文:2020,Vol:38,Issue(3):596-603
引用本文:
匡秀琴, 李瑞雷, 季清清, 江俊杰, 金曼. 不同热处理对Al-7.95Zn-1.84Mg-0.65Cu合金力学性能和耐腐蚀性能的影响[J]. 西北工业大学学报
KUANG Xiuqin, LI Ruilei, JI Qingqing, JIANG Junjie, JIN Man. Effects of Different Heat Treatments on Mechanical Properties and Corrosion Resistance of Al-7.95Zn-1.84Mg-0.65Cu Aluminum Alloy[J]. Northwestern polytechnical university

不同热处理对Al-7.95Zn-1.84Mg-0.65Cu合金力学性能和耐腐蚀性能的影响
匡秀琴, 李瑞雷, 季清清, 江俊杰, 金曼
上海大学 材料科学与工程学院, 上海 200072
摘要:
通过硬度和拉伸实验以及晶间腐蚀和透射电镜(TEM)重点研究了回归再时效(RRA)热处理对Al-7.95Zn-1.84Mg-0.65Cu铝合金力学性能和耐蚀性的影响。研究结果表明,相比于单级峰值时效(T6)工艺,经RRA工艺(120℃/24 h+200℃/10 min+120℃/24 h)处理后,Al-7.95Zn-1.84Mg-0.65Cu合金能够获得较高的硬度,同时抗拉强度达到528.37 MPa,伸长率为13.73%,强塑积提高了29.4%;电导率为40.47% IACS,晶间腐蚀深度仅为59.43 μm,剥落腐蚀等级为EA级。透射电镜结果表明,RRA处理后合金晶内析出尺寸较大、衬度更加明显、强化效应大的η'相,晶界析出相呈现不连续分布,晶界析出相更加粗大,并形成了更宽的无沉淀析出带。
关键词:    Al-Zn-Mg-Cu合金    力学性能    回归再时效    析出相    耐腐蚀    硬度和拉伸实验   
Effects of Different Heat Treatments on Mechanical Properties and Corrosion Resistance of Al-7.95Zn-1.84Mg-0.65Cu Aluminum Alloy
KUANG Xiuqin, LI Ruilei, JI Qingqing, JIANG Junjie, JIN Man
School of Materials Science and Engineering, Shanghai University, Shanghai 200072, China
Abstract:
The effects of retrogression and re-aging(RRA) heat treatment on the mechanical properties and corrosion resistance of Al-7.95Zn-1.84Mg-0.65Cu aluminum alloy were investigated by hardness and tensile tests, as well as intergranular corrosion and transmission electron microscopy (TEM). The results show that the Al-7.95Zn-1.84Mg-0.65Cu alloy can obtain better hardness than the single-stage peak aging (T6) process after RRA process (120℃/24 h+200℃/10 min+120℃/24 h). At the same time, the tensile strength is 528.37 MPa, with 13.73% elongation and 29.4% increase in strong plastic product. The electrical conductivity is 40.47% IACS, the intergranular corrosion depth is only 59.43 μm, and the exfoliation corrosion grade is EA. The test results of transmission electron microscopy showed that the η' phase with larger size, greater strengthening effect and more obvious contrast is found in the alloy crystal after RRA treatment, and grain boundary precipitates (GBPs) become more discrete and coarser and precipitation-free precipitated zone (PFZ) becomes wider.
Key words:    Al-Zn-Mg-Cu alloy    mechanical properties    retrogression and re-aging    precipitates    corrosion resistance    hardness and tensile test   
收稿日期: 2019-09-04     修回日期:
DOI: 10.1051/jnwpu/20203830596
通讯作者: 金曼(1978-),女,上海大学副教授,主要从事于铝合金强韧化及耐腐蚀性能研究。E-mail:jinman919@shu.edu.cn     Email:jinman919@shu.edu.cn
作者简介: 匡秀琴(1992-),女,上海大学硕士研究生,主要从事于热处理工艺对Al-Zn-Mg-Cu合金组织和性能影响研究。
相关功能
PDF(2711KB) Free
打印本文
把本文推荐给朋友
作者相关文章
匡秀琴  在本刊中的所有文章
李瑞雷  在本刊中的所有文章
季清清  在本刊中的所有文章
江俊杰  在本刊中的所有文章
金曼  在本刊中的所有文章

参考文献:
[1] LI J, LI F, MA X, et al. Effect of Grain Boundary Characteristic on Intergranular Corrosion And Mechanical Properties of Severely Sheared Al-Zn-Mg-Cu Alloy[J]. Materials Science & Engineering A, 2018, 732:53-62
[2] ZUO J, HOU L, SHI J, et al. Effect of Deformation Induced Precipitation on Dynamic Aging Process and Improvement of Mechanical/Corrosion Properties AA7055 Aluminum Alloy[J]. Journal of Alloys and Compounds, 2017, 708:1131-1140
[3] ÖZER G, KARAASLAN A. Properties of AA7075 Aluminum Alloy in Aging and Retrogression and Reaging Process[J]. Chinese Journal of Nonferrous Metals, 2017, 27:2357-2362
[4] 陈文. 先进铝合金在A380上的应用[J]. 航空维修与工程,2005(2):40-41 CHEN Wen. Application of Advanced Aluminum Alloy on A380[J]. Aviation Maintenance and Engineering, 2005(2):40-41(in Chinese)
[5] WEN K, FAN Y, WANG G, et al. Aging Behavior And Precipitate Characterization of a High Zn-Containing Al-Zn-Mg-Cu Alloy with Various Tempers[J]. Materials and Design, 2016, 101:16-23
[6] XIAO Y P, PAN Q L, LI W B, et al. Influence of Retrogression and Re-Aging Treatment on Corrosion Behaviour of an Al-Zn-Mg-Cu Alloy[J]. Materials & Design, 2011, 32(4):2149-2156
[7] 林洪, 刘利. 双级时效对7XXX系铝合金力学性能及晶间腐蚀性能的影响[J]. 锻压技术, 2015, 40(10):122-125 LIN Hong, LIU Li. Effect of Two-Stage Aging on Mechanical Properties and Intergranular Corrosion Properties of 7XXX Aluminum Alloy[J]. Forging Technology, 2015, 40(10):122-125(in Chinese)
[8] OZER G, KARAASLAN A. Relationship of RRA Heat Treatment with Exfoliation Corrosion, Electrical Conductivity and Microstructure of AA7075 Alloy[J]. Materials and Corrosion, 2017, 68:1260-1267
[9] 李红英. 金属拉伸试样的断口分析[J]. 山西大同大学学报, 2011, 27(1):76-79 LI Hongying. Fracture Analysis of Metal Tensile Specimens[J]. Journal of Shanxi Datong University, 2011, 27(1):76-79(in Chinese)
[10] 宁爱林, 蒋寿生, 彭北山. 铝合金的力学性能及其电导率[J]. 轻金属, 2005(6):34-36 NING Ailin, JIANG Shousheng, PENG Beishan. Mechanical Properties and Electrical Conductivity of Aluminum Alloy[J]. Light Metal, 2005(6):34-36(in Chinese)
[11] WATERLOO G, HANSEN V, GJNNES J, et al. Effect of Predeformation and Preaging at Room Temperature in Al-Zn-Mg-(Cu,Zr) Alloys[J]. Materials Science and Engineering A, 2001(303):226-233
[12] LI Y Y, KOVARIK L, PHILLIPS P J, et al. High-Resolution Characterization of the Precipitation Behavior of an Al-Zn-Mg-Cu Alloy[J]. Philosophical Magazine Letters, 2012, 92(4):166-178
[13] Blaschko O, Ernst G, Fratzl P, et al. A Neutron Scattering Investigation of the Early Stages of Guinier-Preston Zone Formation in Al-Zn-Mg-(Cu) Alloys[J]. Acta Mater, 1982, 30(2):547-552
[14] 廖郁国, 韩晓祺, 曾苗霞, 等. Cu元素对7XXX系列铝合金再结晶的影响[J]. 上海金属, 2014, 36(3):25-28 LIAO Yuguo, HAN Xiaoqi, ZENG Miaoxia, et al. Effect of Cu on Recrystallization of 7XXX Series Aluminum Alloy[J]. Shanghai Metal, 2014, 36(3):25-28(in Chinese)
[15] XIA P, LIU Z, BAI S, et al. Enhanced Fatigue Crack Propagation Resistance in a Superhigh Strength Al-Zn-Mg-Cu Alloy by Modifying RRA Treatment[J]. Materials Characterization, 2016, 118:438-445
[16] 沈茹娟, 肖代红. 时效热处理对7B50超强铝合金组织与性能的影响[J]. 粉末冶金材料科学与工程, 2016, 21(1):78-84 SHEN Rujuan, XIAO Daihong. Effect of Aging Heat Treatment on Microstructure and Properties of 7B50 Super-Strong Aluminum Alloy[J]. Powder Metallurgy Materials Science and Engineering, 2016, 21(1):78-84(in Chinese)
[17] 滕天娇, 谭子昊, 杨林, 等. 回归再时效处理对Al-6Zn-2Mg-2Cu合金力学性能及耐蚀性的影响[J]. 材料热处理学报, 2018, 39(1):14-19 TENG Tianjiao, TAN Zihao, YANG Lin, et al. Effect of Retrogression and Re-Aging Treatment on Mechanical Properties and Corrosion Resistance of Al-6Zn-2Mg-2Cu Alloy[J]. Journal of Materials Heat Treatment, 2018, 39(1):14-19(in Chinese)
[18] 杨荣先, 刘志义, 陈来, 等. 回归再时效对超高强铝合金力学性能及组织的影响[J]. 粉末冶金材料科学与工程, 2016, 21(2):264-269 YANG Rongxian, LIU Zhiyi, CHEN Lai, et al. Effect of Retrogression and Reaging on Mechanical Properties and Microstructure of Ultra High Strength Aluminum Alloy[J]. Powder Metallurgy Materials Science and Engineering, 2016, 21(2):264-269(in Chinese)
[19] 孙刚, 梁春霞,崔建忠, 等. 回归再时效处理对7050铝合金微观组织与性能的影响[J]. 特种铸造及有色合金, 2017(9):929-932 SUN Gang, LIANG Chunxia, CUI Jianzhong, et al. Effect of Retrogression and Re-Aging Treatment on Microstructure and Properties of 7050 Aluminum Alloy[J]. Special Casting and Non-Ferrous Alloys, 2017(9):929-932(in Chinese)
[20] 王春华, 张涛, 尹红霞, 等. 时效处理对7075铝合金组织与性能的影响[J]. 金属热处理, 2017(9):87-89 WANG Chunhua, ZHANG Tao, YIN Hongxia, et al. Effect of Aging Treatment on Microstructure and Properties of 7075 Aluminum Alloy[J]. Heat Treatment of Metals, 2017(9):87-89(in Chinese)
[21] WANG R Z T Z T. Handbook of Aluminium Alloy and its Working[M]. Changsha:Central South University Press, 2000