论文:2020,Vol:38,Issue(3):580-588
引用本文:
张礼, 高正红, 杜一鸣. 低阻常规布局客机巡航阻力特性研究[J]. 西北工业大学学报
ZHANG Li, GAO Zhenghong, DU Yiming. Study on Cruise Drag Characteristics of Low Drag Normal Layout Civil Aircraft[J]. Northwestern polytechnical university

低阻常规布局客机巡航阻力特性研究
张礼, 高正红, 杜一鸣
西北工业大学 航空学院, 陕西 西安 710072
摘要:
对常规布局客机与机翼相关的减阻措施进行研究,通过减阻改善飞机性能。主要通过有层流流动机翼减小摩阻和弱激波机翼减小波阻,在机翼表面前缘维持一段层流区以减小摩阻,机翼剖面压力分布由中部顺压梯度区域向后缘逆压梯度区域和缓过渡形成弱激波减小激波阻力;机翼机身结合处加机身腹部整流增加结合处流速,减弱机翼机身结合处的附面层堆积,改善阻力性能;融合式翼梢小翼降低翼尖诱导阻力,研究小翼外形参数对降低诱导阻力、纵向力矩、偏航力矩的影响,得出降低翼尖诱导阻力效果好、力矩合适的翼梢小翼模型。由于翼身整流对机翼内翼段下表面的压力分布有显著影响,翼梢小翼会对翼尖的流动有重要影响,因此进行单方面的减阻是不可取的,需对与机翼相关的3种减阻措施进行一体化减阻设计研究,并对相应的减阻量进行评估,为常规布局类客机的减阻设计提供参考。通过对上述减阻措施的评估分析达到了减小阻力、提高常规布局客机巡航因子,改善飞机巡航性能的效果。
关键词:    低阻常规布局客机    减阻    摩阻    波阻    翼身整流减阻    翼梢小翼    诱导阻力    巡航因子   
Study on Cruise Drag Characteristics of Low Drag Normal Layout Civil Aircraft
ZHANG Li, GAO Zhenghong, DU Yiming
School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
This paper focus on the wing shape related drag reduction measures of normal layout civil aircraft, through the drag reduction to improve the aircraft performance. Mainly by the laminar flow wing to reduce skin drag and weak shock wave wing to reduce shock drag, to keep a section of laminar zone on the wing leading edge to reduce skin drag, the wing profile's pressure distribution transit from the middle part's tonsure pressure zone to the trailing edge's inverse pressure gradient zone gentle to reduce the shock drag. The wing body junction plus the body belly fairing to increase the junction flow velocity, through increase flow velocity to weak the boundary layer stacked at the junction, improve the drag performance. The blended winglet to reduce the wing tip induced drag, study the shape parameters impact on the drag reduction, longitudinal moment and directional moment, attain the winglet model with drag reduction effect, suitable pitching moment and directional moment. For the wing body fairing have significant impact on the wing shape lower surface pressure distribution, the winglet have important impact on the wing tip flow, so the single part drag reduction measure is not feasible, need to carry out integrated drag reduction study on the wing related three drag reduction measures, and study the drag reduction measure's drag reduction decrement, put a reference for the normal layout civil aircraft's drag reduction. Through the above drag reduction measure's assessment attain the effect of drag reduction and rising the normal layout civil aircraft's cruise ratio, improving the cruise performance.
Key words:    low drag normal layout civil aircraft    drag reduction    skin drag    shock wave drag    wing body fairing and drag reduction    blended winglet    induced drag    cruise factor   
收稿日期: 2019-07-12     修回日期:
DOI: 10.1051/jnwpu/20203830580
通讯作者:     Email:
作者简介: 张礼(1982-),西北工业大学博士研究生,主要从事总体设计、飞行控制研究。
相关功能
PDF(3301KB) Free
打印本文
把本文推荐给朋友
作者相关文章
张礼  在本刊中的所有文章
高正红  在本刊中的所有文章
杜一鸣  在本刊中的所有文章

参考文献:
[1] 李为吉. 飞机总体设计[M]. 西安:西北工业大学出版社,2004 LI Weiji. Aircraft Preliminary Design[M]. Xi'an:Northwestern Polytechnical University Press, 2004(in Chinese)
[2] 方宝瑞.飞机气动布局设计[M]. 北京:航空工业出版社,1997 FANG Baorui. Aircraft Aerodynamic Layout Design[M]. Beijing:Aviation Industry Press, 1997(in Chinese)
[3] RAYMER D P. Aircraft Design:A Conceptual Approach[M]. 5th ed. USA:AIAA Education Series,2012
[4] 黄俊. 未来大型客机气动布局设计[J]. 航空制造技术,2010(19):26-29 HUANG Jun. Aerodynamic Configuration Design of Future Large Aircraft[J]. 航空制造技术, 2010(19):26-29(in Chinese)
[5] 艾俊强. 典型高升阻比飞机气动布局及其发展[J]. 航空科学技术,2014(3):1-5 AI Junqiang. Typical High Lift-Drag Ratio Aerodynamic Layout and Development for Aircraft[J]. Aeron autical Science &Technology, 2014(3):1-5(in Chinese)
[6] 张彬乾,王元元,段卓毅,等. 大上翘机身后体设计方法[J]. 航空学报, 2010,31(10):1933-1939 ZHANG Binqian, WANG Yuanyuan, DUAN Zhuoyi, et al. Design Method for Large Upswept After Body of Transport Aircraft[J]. Acta Aeronautical et Astronauica Sinica, 2010,31(10):1933-1939(in Chinese)
[7] ZHANG Li, GAO Zhenghong, DUYiming. Drag Reduction on the Fuselage Shape[C]//The Proceeding of the Asia-Pacific International Symposium on Aerospace Technology, Chengdu, 2018:376-385
[8] OLAF Brodersen, SIMONE Crippa, et al. DLR Results From the Fourth AIAA Computational Fluid Dynamics Drag Prediction Workshop[J]. Journal of Aircraft, 2014, 51(4):1135-1147
[9] 朱自强,鞠胜军,吴宗成. 层流流动主/被动控制技术[J]. 航空学报,2016,37(7):2065-2087 ZHU Ziqiang, JU Shengjun, WU Zongcheng. Laminar Flow Active/Passive Control Technology[J]. Acta Aeronautica et Astronautica Sinca, 2016, 37(7):2065-2087(in Chinese)
[10] 张彦仲. 大飞机气动总体技术的发展[J]. 中国工程科学, 2009,11(5):4-17 ZHANG Yanzhong. The Development of Aerodynamics & Configuration Technology for Large Aircraft[J]. Engineering Sciences, 2009, 11(5):4-17(in Chinese)
[11] 乔志德. 自然层流超临界翼型的设计研究[J]. 流体力学实验与测量, 1998,12(4):24-29 QIAO Zhide. Design of Supercritical Airfoils with Natural Laminar Flow[J]. Experiments and Measurements in Fluid Mechanics, 1998, 12(4):24-29(in Chinese)
[12] 司亮,王和平,龚翠翠. 翼梢装置对机翼气动、结构特性影响研究[J]. 空气动力学报,2011,29(2):177-181 SI Liang, WANG Heping, GONG Cuicui. Investigation of Effects of Winglets on Wing's Aerodynamic and Structural Behavior[J]. Acta Aerodynamica Sinica, 2011,29(2):177-181(in Chinese)
[13] 杨清真,张仲寅. 超临界层流机翼边界层及气动特性分析[J]. 航空学报,2004,25(5):438-442 YANG Qingzhen, ZHANG Zhongyin. Analysis of the Boundary Layer and Aerodynamic Characteristics of a Supercritical Laminar Wing[J]. Acta Aeronautica et Astronautica Sinca, 2004,25(5):438-442(in Chinese)
[14] 朱自强,吴宗成,丁举春. 层流流动控制技术及应用[J]. 航空学报,2011,32(5):765-781 ZHU Ziqiang, WU Zongcheng, DING Juchun. Laminar Flow Control Technology and Application[J]. Acta Aeronautica et Astronautica Sinca, 2011,32(5):765-781(in Chinese)
[15] JAMES G. CODER. Overflow Analysis of the DLR-F11 High-Lift Configuration Including Transition Modeling[J]. Journal of Aircraft, 2015,52(4):1082-1097
[16] LANGLOIS M, MASSON C, PARASCHIVOIU I. Fully Three-Dimensional Transition Prediction on Swept Wings in Transonic Flows[J]. Journal of Aircraft, 1998, 35(2):254-259
[17] LANGLOIS M, MASSON C, KAFYEKE F, Paraschivoiu I. Automated Method for Transition Prediction on Wings in Transonic Flows[J]. Journal of Aircraft, 2002, 39(3):460-468
[18] GRABE C,NIE SY, KRUMBEIN A. Transition Transport Modeling for the Prediction of Cross Flow Transition[R]. AIAA-2016-3572
[19] UWE FEY,YASUHIRO EGAMI, ROLF H.ENGLER. High Reynolds Number Transition Detection by Means of Temperature Sensitive Paint[R]. AIAA-2006-514
[20] 张礼,高正红. 下单翼布局飞机不同整流减阻特性研究[J]. 航空工程进展,2018, 9(2):197-202 ZHANG Li, GAO Zhenghong.The Studying of Different Fairings for Fairing and Drag Reduction on the Low-Wing Layout Aircraft[J]. Advances in Aeronautical Science and Engineering, 2018, 9(2):197-202(in Chinese)
[21] 张声伟,董建鸿,周林. 气动力配平及配平损失计算方法研究[J]. 航空工程进展,2010,1(2):132-136 ZHANG Shengwei, DONG Jianhong, ZHOU Lin. Calculating Method Research of Aerodynamic Trim and Trim Expense[J]. Advances in Aeronautical Science and Engineering, 2010, 1(2):132-135(in Chinese)