论文:2020,Vol:38,Issue(3):540-549
引用本文:
谯富祥, 史静平, 章卫国, 吕永玺, 屈晓波. 一种基于RBFNN的变体飞机高精度自适应反步控制方法[J]. 西北工业大学学报
QIAO Fuxiang, SHI Jingping, ZHANG Weiguo, LYU Yongxi, QU Xiaobo. A High Precision Adaptive Back-Stepping Control Method for Morphing Aircraft Based on RBFNN Method[J]. Northwestern polytechnical university

一种基于RBFNN的变体飞机高精度自适应反步控制方法
谯富祥, 史静平, 章卫国, 吕永玺, 屈晓波
西北工业大学 自动化学院, 陕西 西安 710072
摘要:
针对变体飞机非线性模型的不确定性问题,提出了一种基于径向基神经网络(radial basis function neural networks,RBFNN)的高精度自适应反步控制方法。首先,在变体飞机静态和动态气动参数分析的基础上,运用传统反步法设计了非线性控制律,并引入径向基神经网络在线逼近系统的不确定项,提高系统鲁棒性;并设计鲁棒项消除径向基神经网络带来的逼近误差。其次,通过对虚拟控制变量进行求导项设计微分跟踪器,解决了传统反步法中存在的"微分膨胀"问题。通过Lyapunov稳定性分析,证明该方法能保证闭环系统跟踪误差最终收敛且一致有界。最后,基于Matlab/Simulink搭建了变体飞机的数字仿真模型,并与常规反步法进行了对比分析,仿真结果表明该方法具有控制精度高、鲁棒性强的特点。
关键词:    变体飞机    反步法    径向基网络    自适应控制   
A High Precision Adaptive Back-Stepping Control Method for Morphing Aircraft Based on RBFNN Method
QIAO Fuxiang, SHI Jingping, ZHANG Weiguo, LYU Yongxi, QU Xiaobo
School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
To overcome the uncertainties of the nonlinear model of a morphing aircraft, this paper presents a high-precision adaptive back-stepping control method based on the radial basis function neural network (RBFNN). Firstly, based on the analysis of static and dynamic aerodynamic parameters of the morphing aircraft, its nonlinear control law is designed by using the conventional back-stepping method. The RBFNN is introduced to approximate online the uncertain terms of the nonlinear control law so as to improve its robustness. The robust term is designed to eliminate the approximation error caused by the RBFNN. Secondly, the tracking differentiator is designed through solving the virtual control variables, thus solving the "differential expansion" problem existing in the traditional back-stepping method. The Lyapunov stability analysis proves that our method can ensure that the tracking error of a closed-loop system converges finally and that its signals are uniformly bounded. Finally, the digital simulation model of the morphing aircraft is established with the MATLAB/Simulink; our method is compared with the conventional back-stepping control method. The simulation results show that our method has a higher control precision and stronger robustness.
Key words:    morphing aircraft    back-stepping control    radial basis function neural network (RBFNN)    adaptive control   
收稿日期: 2019-08-29     修回日期:
DOI: 10.1051/jnwpu/20203830540
基金项目: 国家自然科学基金(61573286)与航空科学基金(20155853043,20165853039)资助
通讯作者:     Email:
作者简介: 谯富祥(1991-),西北工业大学博士研究生,主要从事变体飞机控制研究。
相关功能
PDF(1575KB) Free
打印本文
把本文推荐给朋友
作者相关文章
谯富祥  在本刊中的所有文章
史静平  在本刊中的所有文章
章卫国  在本刊中的所有文章
吕永玺  在本刊中的所有文章
屈晓波  在本刊中的所有文章

参考文献:
[1] SHI R, PENG J. Morphing Strategy Design for Variable-Wing Aircraft[C]//15th AIAA Aviation Technology, Integration, and Operations Conference. 2015:3002
[2] WU Z, LU J, RAJPUT J, et al. Adaptive Neural Control Based on High Order Integral Chained Differentiator for Morphing Aircraft[EB/OL]. (2015-10-25)[2019-08-29]. https://www.hindawi.com/journals/mpe/2015/787931/
[3] SEIGLER T M, NEAL D A, BAE J S, et al. Modeling and Flight Control of Large-Scale Morphing Aircraft[J]. Journal of Aircraft, 2007, 44(4):1077-1087
[4] WU Z, LU J, ZHOU Q, et al. Modified Adaptive Neural Dynamic Surface Control for Morphing Aircraft with Input and Output Constraints[J]. Nonlinear Dynamics, 2017, 87(4):2367-2383
[5] SHI R, WAN W. Analysis of Flight Dynamics for Large-Scale Morphing Aircraft[J]. Aircraft Engineering and Aerospace Technology:An International Journal, 2015, 87(1):38-44
[6] O'GRADY B. Multi-Objective Optimization of a Three Cell Morphing Wing Substructure[D]. Dayton:University of Dayton, 2010
[7] JOHNSON T, FRECKER M, ABDALLA M, et al. Nonlinear Analysis and Optimization of Diamond Cell Morphing Wings[J]. Journal of Intelligent Material Systems and Structures, 2009, 20(7):815-824
[8] JOO J J, SANDERS B. Optimal Location Of Distributed Actuators Within an In-Plane Multi-Cell Morphing Mechanism[J]. Journal of Intelligent Material Systems and Structures, 2009, 20(4):481-492
[9] ANDERSEN G, COWAN D, PIATAK D. Aeroelastic Modeling, Analysis and Testing of a Morphing Wing Structure[C]//48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2007:1734
[10] SEIGLER T, NEAL D, INMAN D. Dynamic Modeling of Large-Scale Morphing Aircraft[C]//47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2006:1893
[11] OBRADOVIC B, SUBBARAO K. Modeling of Flight Dynamics of Morphing Wing Aircraft[J]. Journal of Aircraft, 2011, 48(2):391-402
[12] YUE T, WANG L, AI J. Longitudinal Linear Parameter Varying Modeling and Simulation of Morphing Aircraft[J]. Journal of Aircraft, 2013, 50(6):1673-1681
[13] BOOTHE K, FITZPATRICK K, LIND R. Controllers for Disturbance Rejection for A Linear Input-Varying Class of Morphing Aircraft[C]//46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, 2005:2374
[14] BEAVERSTOCK C S, AJAJ R, FRISWELL M I, et al. Effect of Span-Morphing on the Flight Modes, Stability & Control[C]//AIAA Guidance, Navigation, and Control (GNC) Conference, 2013:4993
[15] YUE T, WANG L, AI J. Gain Self-Scheduled H Control for Morphing Aircraft in the Wing Transition Process Based on an LPV Model[J]. Chinese Journal of Aeronautics, 2013, 26(4):909-917
[16] BALDELLI D H, LEE D H, SÁNCHEZ PEÑA R S, et al. Modeling and Control of an Aeroelastic Morphing Vehicle[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(6):1687-1699
[17] GANDHI N, JHA A, MONACO J, et al. Intelligent Control of a Morphing Aircraft[C]//48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2007:1716
[18] NOBLEHEART W, SHIVANAPURA LAKSHMIKANTH G, CHAKRAVARTHY A, et al. Single Network Adaptive Critic(SNAC) Architecture for Optimal Tracking Control of a Morphing Aircraft during a Pull-up Maneuver[C]//AIAA Guidance, Navigation, and Control Conference, 2013:5003
[19] VALASEK J, LAMPTON A, MARWAHA M. Morphing Unmanned Air Vehicle Intelligent Shape and Flight Control[EB/OL].(2009-04-15)[2019-08-29]. https://www.researchgate.net/publication/228644798_Morphing_Unmanned_Air_Vehicle_Intelligent_Shape_and_Flight_control
[20] CHENLIANG W, YAN L. Adaptive Dynamic Surface Control for Linear Multivariable Systems[J]. Automatica, 2010, 46(10):1703-1711
[21] LIU Y J, CHEN C L P, WEN G X, et al. Adaptive Neural Output Feedback Tracking Control for a Class of Uncertain Discrete-Time Nonlinear Systems[J]. IEEE Trans on Neural Networks, 2011, 22(7):1162-1167
[22] CHEN M, TAO G, JIANG B. Dynamic Surface Control Using Neural Networks for a Class of Uncertain Nonlinear Systems with Input Saturation[J]. IEEE Trans on Neural Networks and Learning Systems, 2014, 26(9):2086-2097
[23] CAO C, HOVAKIMYAN N. Novel L1 Neural Network Adaptive Control Architecture with Guaranteed Transient Performance[J]. IEEE Trans on Neural Networks, 2007, 18(4):1160-1171