论文:2020,Vol:38,Issue(3):459-464
引用本文:
李靖璐, 王鹏, 陈旭, 董华超. 基于FFD的翼身融合水下滑翔机外形优化设计[J]. 西北工业大学学报
LI Jinglu, WANG Peng, CHEN Xu, DONG Huachao. Shape Optimization of Blended-Wing-Body Underwater Gliders Based on Free-Form Deformation[J]. Northwestern polytechnical university

基于FFD的翼身融合水下滑翔机外形优化设计
李靖璐, 王鹏, 陈旭, 董华超
西北工业大学 航海学院, 陕西 西安 710002
摘要:
水下滑翔机发展至今大体上可以分成2个大类:常规布局外形水下滑翔机与非常规布局水下滑翔机。翼身融合水下滑翔机作为一种非常规布局水下滑翔机,因其独特的流体外形布局,具有更好的流体动力特性。但设计出具有优秀水动力性能的翼身融合水下滑翔机外形较为困难,因此开展翼身融合水下滑翔机外形优化设计研究工作具有十分重要的意义。开展基于自由变形(FFD)的翼身融合水下滑翔机外形优化设计研究,以FFD参数化方法为核心,与CFD求解器、优化算法、网格变形方法相耦合,组成了完整的自动外形优化设计框架,并用该框架开展了翼身融合水下滑翔机外形优化设计工作。以翼身融合水下滑翔机下沉和上浮一个工作周期的平均阻力系数为目标函数,在考虑体积约束的条件下开展外形优化设计,优化结果表明翼身融合水下滑翔机的滑翔性能得到了明显提升。
关键词:    海洋工程    翼身融合水下滑翔机    自由变形    外形优化设计框架   
Shape Optimization of Blended-Wing-Body Underwater Gliders Based on Free-Form Deformation
LI Jinglu, WANG Peng, CHEN Xu, DONG Huachao
School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710002, China
Abstract:
Currently developed underwater gliders can be roughly divided into the two types:traditional configuration and unconventional configuration. As a type of underwater gliders with unconventional configuration, a blended-wing-body (BWB) underwater glider has better fluid dynamic performances because of its unique shape. However, it is difficult to design the shape of the BWB underwater glider that has excellent hydrodynamic performances. Therefore, it is of great significance to optimize its shape, which this paper carries out by using the free-form deformation (FFD). The complete and automatic shape optimization framework is established by jointly using FFD parameterization method, CFD solver, optimization algorithm and mesh deformation method. The framework is used to optimize the shape of a BWB underwater glider. The average drag coefficient of the BWB underwater glider during its sinking and floating in one working period is used as the objective function to optimize its shape, with the volume constraints considered. The optimization results show that the gliding performance of the BWB underwater glider is remarkably enhanced.
Key words:    BWB underwater glider    shape optimization framework    free-form deformation   
收稿日期: 2019-08-30     修回日期:
DOI: 10.1051/jnwpu/20203830459
基金项目: 国家自然科学基金(51875466,51805436)与中国博士点基金(2018M643726,2019T20941)资助
通讯作者:     Email:
作者简介: 李靖璐(1996-),西北工业大学博士研究生,主要从事水下总体设计及优化算法研究。
相关功能
PDF(1873KB) Free
打印本文
把本文推荐给朋友
作者相关文章
李靖璐  在本刊中的所有文章
王鹏  在本刊中的所有文章
陈旭  在本刊中的所有文章
董华超  在本刊中的所有文章

参考文献:
[1] DHANAK M R, XIROS N I. Springer Handbook of Ocean Engineering[M]. Cham, Switzerland:Springer, 2016:301-322
[2] CARMICHAEL R L, ERICKSON L L. Pan Air-a Higher Order Panel Method for Predicting Subsonic or Supersonic Linear Potential Flows about Arbitrary Configurations[C]//AIAA 14th Fluid & Plasma Dynamics Conference, 1981
[3] 王丹. 飞行器气动外形优化设计方法研究与应用[D]. 西安:西北工业大学,2015 WANG Dan. Approach and Application Research on Aerodynamic Shape Optimization Design[D]. Xi'an:Northwestern Polytechnical University, 2015(in Chinese)
[4] 孙春亚. 翼身融合水下滑翔机外形设计与运动分析[D]. 西安:西北工业大学,2017 SUN Chunya. Shape Design and Motion Analysis of Blended-Wing-Body Underwater Glider[D]. Xi'an:Northwestern Polytechnical University, 2017(in Chinese)
[5] CHENGSHAN L, PENG W, HUACHAO D, et al. A Simplified Shape Optimization Strategy for Blended-Wing-Body Underwater Gliders[J]. Structural and Multidisciplinary Optimization, 2018, 58:2189-2202
[6] 陈颂, 白俊强, 史亚云, 等. 民用客机翼/机身/平尾构型气动外形优化设计方法研究[J]. 航空学报, 2015, 36(10):3195-3207 CHEN Song, BAI Junqiang, SHI Yayun, et al. Aerodynamic Optimization Design of Civil Jet Wing-Body-Tail Configuration[J]. Acta Aeronauticaet Astronautica Sinica, 2015, 36(10):3195-3207(in Chinese)
[7] 汪怡平, 王涛, 黎帅. 基于自由变形技术的汽车气动减阻优化[J]. 机械工程学报, 2017, 53(9):135-143 WANG Yiping, WANG Tao, LI Shuai. Aerodynamic Drag Reduction of Vehicle Based on Free Form Deformation[J]. Journal of Mechanical Engineering, 2017, 53(9):135-143(in Chinese)
[8] LI J, WANG P, DONG H, et al. Shape Optimisation of Blended-Wing-Body Underwater Gliders Based on Free-Form Deformation[J]. Ships and Offshore Structures, 2020, 15(3):227-235
[9] WANG X, SONG B, PENG W, et al. Hydrofoil Optimization of Underwater Glider Using Free-Form Deformation and Surrogate-Based Optimization[J]. International Journal of Naval Architecture & Ocean Engineering, 2018, 10(6):730-740
[10] 张来平,邓小刚,张涵信. 动网格生成技术及非定常计算方法进展综述[J]. 力学进展, 2010, 40(4):424-447 ZHANG Laiping, DENG Xiaogang, ZHANG Hanxin. Reviews of Moving Grid Generation Techniques and Numerical Methods for Unsteady Flow[J]. Advances in Mechanics, 2010, 40(4):424-447(in Chinese)
[11] GILL P E, MURRAY W, SAUNDERS M A. SNOPT:an SQP Algorithm for Large-Scale Constrained Optimization[J]. Society for Industrial and Applied Mathematics, 2005, 47(1):99-131
[12] WU X, WANG P, LI J, et al. Adjoint-Based Optimization for Blended-Wing-Body Underwater Gliders' Shape Design[C]//Oceans-MTS/IEEE Kobe Techno-Oceans Conference, 2018