论文:2020,Vol:38,Issue(2):451-457
引用本文:
曹懿, 韩飞, 杨凯, 张莹珞. 一种适用于小垂度拉索的精确动力分析方法[J]. 西北工业大学学报
Cao Yi, Han Fei, Yang Kai, Zhang Yingluo. An Exact Dynamic Analysis Method for Shallow Sagged Cables[J]. Northwestern polytechnical university

一种适用于小垂度拉索的精确动力分析方法
曹懿1, 韩飞2, 杨凯3, 张莹珞4
1. 西北工业大学 生命学院, 陕西 西安 710072;
2. 西北工业大学 力学与土木建筑学院, 陕西 西安 710129;
3. 内蒙古交通设计研究院有限责任公司, 内蒙古自治区 呼和浩特 010000;
4. 西北工业大学 航海学院, 陕西 西安 710072
摘要:
随着现代工程结构跨度和高度的不断增长,索缆结构正变得愈加复杂,其动力问题已成为结构设计、运营期性能监控与维护以及振动控制的关键,因此有必要研究发展一套高精度、高效率的复杂索缆体系动力分析方法。为此,基于动刚度理论,首次推导出了考虑抗弯刚度和倾角等因素影响后,小垂度拉索系统动刚度矩阵的显式解;对原Wittrick-Williams算法进行改进,使其适用于非线性系统频率方程的求解,克服了已有研究在频率求解时的"漏根"现象;由于中间推导过程均是以解析形式给出的,因此很大程度上提高了计算精度和效率,最后结合数值案例分析验证了所提出方法的正确性。
关键词:    索缆系统    小垂度    动力分析    动力刚度法    频率方程   
An Exact Dynamic Analysis Method for Shallow Sagged Cables
Cao Yi1, Han Fei2, Yang Kai3, Zhang Yingluo4
1. School of Life Science, Northwestern Polytechnical University, Xi'an 710072, China;
2. School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi'an 710129, China;
3. Inner Mongolian Transportation Design & Research Institute Co, Ltd, Hohhot 010000, China;
4. School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
With the increase of the span and height of modern engineering structures, the design complexity of the cable structure is constantly increasing, whose dynamic problem has become the key to structural design, performance monitoring and maintenance, and vibration control. Therefore, it is necessary to study and develop a new dynamic analysis theory for complex cable system with higher calculation accuracy and efficiency to meet the requirements of exact analysis of engineering structures. In view of this, a novel dynamic analysis method for shallow sagged cable system is proposed in this paper based on the dynamic stiffness method. Since the derivation process is given in analytical form, the calculation accuracy and efficiency are promoted greatly. The numerical cases are used to verify the accuracy of the proposed dynamic analysis method, meanwhile, the simulation results show that the proposed method can overcome the "root missing" phenomenon when solving the frequency equation by the existing analytical method.
Key words:    cable structure system    shallow sag    dynamic analysis    dynamic stiffness method    frequency equation    simulation   
收稿日期: 2019-04-17     修回日期:
DOI: 10.1051/jnwpu/20203820451
基金项目: 国家自然科学基金(51879221)资助
通讯作者:     Email:
作者简介: 曹懿(1990-),女,西北工业大学博士研究生,主要从事海洋工程研究。
相关功能
PDF(899KB) Free
打印本文
把本文推荐给朋友
作者相关文章
曹懿  在本刊中的所有文章
韩飞  在本刊中的所有文章
杨凯  在本刊中的所有文章
张莹珞  在本刊中的所有文章

参考文献:
[1] DAN Danhui, HAN Fei, CHENG Wei, et al. Unified Modal Analysis of Complex Cable Systems via Extended Dynamic Stiffness Method and Enhanced Computation[J]. Structural Control and Health Monitoring, 2019, 26(10):2435
[2] HAN Fei, DAN Danhui. Free Vibration of the Complex Cable System-an Exact Method Using Symbolic Computation[J]. Mechanical Systems and Signal Processing, 2020, 139:106636
[3] HAN Fei, DENG Zichen, Dan Danhui. A Novel Method for Dynamic Analysis of Complex Multi-Segment Cable Systems[J]. Mechanical Systems and Signal Processing, 2020, 142:106780
[4] Routh E J. Dynamics of a System of Rigid Bodies[M]. Netherlands, Elementary Part, Kluwer Academic Publishers-Plenum Publishers, 1978:156-156
[5] IRVINE H M. The Linear Theory of Free Vibrations of a Suspended Cable[J]. Proceedings of the Royal Society A, 1974, 341(1626):299-315
[6] IRVINE H M. Free Vibrations of Inclined Cables[J]. Journal of the Structural Division, 1978, 104(2):343-347
[7] MAIN J A, JONES N P. Vibration of Tensioned Beams with Intermediate Damper. I:Formulation, Influence of Damper Location[J]. Journal of Engineering Mechanics, 2007, 133(4):369-378
[8] RICCIARDI G, SAITTA F. A Continuous Vibration Analysis Model for Cables with Sag and Bending Stiffness[J]. Engineering Structures, 2008, 30(5):1459-1472
[9] HAN Fei, DAN Danhui, CHENG Wei. Exact Dynamic Characteristic Analysis of a Double-Beam System Interconnected by a Viscoelastic Layer[J]. Composites Part B:Engineering, 2019, 163:272-281
[10] HAN Fei, DAN Danhui, CHENG Wei. Extension of Dynamic Stiffness Method to Complicated Damped Structures[J]. Computers & Structures, 2018, 208:143-150
[11] HAN Fei, DAN Danhui, CHENG Wei. An Improved Wittrick-Williams Algorithm for Beam-Type Structures[J]. Composite Structures, 2018, 204:560-566
[12] HAN Fei, ZHANG YingLuo, ZHANG Jubao, et al. Exact Dynamic Analysis of Shallow Sagged Cable System-Theory and Experimental Verification[J]. International Journal of Structural Stability and Dynamics, 2019, 19(12):P1950153
[13] NI Y Q, CO J M, ZHEN G. Dynamic Analysis of Large-Diameter Sagged Cables Taking into Account Flexure Rigidity[J]. Journal of Sound & Vibration, 2002, 257(2):301-319
[14] BOSTON C, WEBER F, GUZZELLA L. Optimal Semi-Active Damping of Cables:Evolutionary Algorithms and Closed-Form Solutions[J]. Smart Materials & Structures, 2009, 18(5):055006
[15] LIU Z, CHEN G, ZHONG J. Application of Finite Difference Method in Measurement of Cable Tension by Vibration Method[J]. Journal of Basic Science & Engineering, 2007, 15(1):104-110
[16] TABATABAI H, MEHRABI A B. Vibration Suppression Measures for Stay Cables[C]//International Conference and Exhibition on Electricity Distribution, 1999
[17] TABATABAI H, MEHRABI A B. Design of Mechanical Viscous Dampers for Stay Cables[J]. Journal of Bridge Engineering, 2000, 5(2):114-123
[18] HAN Fei, DAN Danhui, CHENG Wei. An Exact Solution for Dynamic Analysis of a Complex Double-Beam System[J]. Composite Structures, 2018, 193:295-305
[19] HAN Fei, DAN Danhui, ZOU Yiqing, et al. Experimental and Theoretical Study on Cable-Supporting System[J]. Mechanical Systems and Signal Processing, 2020, 140:106638
[20] HAN Fei, DAN Danhui, CHENG Wei, et al. A Novel Analysis Method for Damping Characteristic of a Type of Double-Beam Systems with Viscoelastic Layer[J]. Applied Mathematical Modelling, 2020, 80:911-928