论文:2020,Vol:38,Issue(2):377-383
引用本文:
张敏, 李松晶. 基于形状记忆合金(SMA)驱动的微流控变色系统[J]. 西北工业大学学报
ZHANG Min, LI Songjing. Shape Memory Alloy(SMA) Actuated Microfluidic Colour-Changing System[J]. Northwestern polytechnical university

基于形状记忆合金(SMA)驱动的微流控变色系统
张敏1, 李松晶2
1. 华北科技学院 机电工程学院, 北京 101601;
2. 哈尔滨工业大学 机电工程学院, 黑龙江 哈尔滨 150001
摘要:
为了提高微流体驱动系统的性能,提出了一种基于形状记忆合金(SMA)的微流体驱动方式,用于微流控变色系统内液体循环的双程驱动。以SMA弹簧为主要驱动元件,设计并制作了基于SMA的微流体驱动装置,建立了SMA驱动元件和SMA驱动微流控变色系统的数学模型,搭建了SMA驱动微流控变色试验平台,在不同参数条件下,对驱动系统的温度响应特性、位移输出特性和液体压强特性进行了仿真分析和试验研究。结果表明,与传统微流体驱动方式相比,SMA驱动的微流体变色系统采用直流电源驱动、体积小、操作便捷,具有较快的响应速度和较高的可靠性。
关键词:    形状记忆合金    微流体驱动    微流控变色系统   
Shape Memory Alloy(SMA) Actuated Microfluidic Colour-Changing System
ZHANG Min1, LI Songjing2
1. School of Mechatronics Engineering, North China Institute of Science and Technology, Beijing 101601, China;
2. School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
Abstract:
In order to improve the performances of microfluidic actuators, a microfluidic actuating way based on the shape memory alloy(SMA) is presented, which is applied for the liquids circulation of a microfluidic colour-changing system. A SMA spring is used as the main actuating part, a microfluidic actuating device based on the SMA spring is designed and fabricated. The models for the SMA spring and the whole SMA actuated microfluidic system are established, the experimental platform is built. The temperature properties, output displacement performances and pressure responses of the present system are simulated and tested under different experimental conditions. Comparing with traditional microfluidic actuating systems, the SMA actuated microfluidic colour-changing system is driven by using DC power, small in size, convenient in operation, and has fast response speed and high reliability.
Key words:    shape memory alloy    microfluidic actuating    microfluidic colour-changing system   
收稿日期: 2019-05-15     修回日期:
DOI: 10.1051/jnwpu/20203820377
基金项目: 河北省自然科学基金(E2019508105)与中央高校基本科研业务费(3142019003)资助
通讯作者:     Email:
作者简介: 张敏(1981-),女,华北科技学院讲师、博士,主要从事液压元件及微流体技术研究。
相关功能
PDF(1063KB) Free
打印本文
把本文推荐给朋友
作者相关文章
张敏  在本刊中的所有文章
李松晶  在本刊中的所有文章

参考文献:
[1] Lee S C, Hur S, Kang D, et al. The Performance of Bioinspired Valveless Piezoelectric Micropump with Respect to Viscosity Change[J]. Bioinspiration and Biomimetics, 2016, 11:1-10
[2] MA H K,LUO W F,LIN J Y. Development of a Piezoelectric Micropump with Novel Separable Design for Medical Applications[J]. Sensor and Actuators A:Physical, 2015, 236:57-66
[3] 张敏,李松晶,蔡申. 基于无阀压电微泵控制的微流控液体变色眼镜[J]. 吉林大学学报, 2017(2):498-503 ZHANG Min, LI Songjing, CAI Shen. A Microfluidic Liquid Colour-Changing Glasses Controlled by Valveless Piezoelectric Micro-Pump[J]. Journal of Jilin University, 2017(2):498-503(in Chinese)
[4] SIMA A H, SALARI A, SHAFII M B. Low-Cost Reciprocating Electromagnetic-Based Micropump for High-Flow Rate Applications[J]. Journal of Micro-Nanolithography MEMS and MOEMS, 2015, 14:1-8
[5] ISLAM N, ASKARI D. Performance Improvement of an AC Electroosmotic Micropump by Hydrophobic Surface Modification[J]. Microfluidics and Nanofluidics, 2012, 14:627-635
[6] ISLAM N, REYNA J. Bi-Directional Flow Induced by an AC Electroosmotic Micropump with DC Voltage Bias[J]. Electrophoresist, 2012, 33:1191-1197
[7] LIU B, SUN J C, LI D S, et al. A High Low Rate Thermal Bubble-Driven Micropump with Induction Heating[J]. Microfluidics and Nanofluidics, 2016, 20:155
[8] GASSMANN S, PAGEL L, LUQUE A, et al. Fabrication of Electroosmotic Micropump Using PCB and SU-8[C]//38th Annual Conference on IEEE Industrial Electronics Society, Montreal, 2012:3958-3961
[9] 关艳霞,戴敬,方肇伦. 以毛细和蒸发作用为驱动力的微泵的研制[J]. 分析化学, 2005,33:423-427 GUAN Yanxia, DAI Jing, FANG Zhaolun. Studies on a Micropump Based on Evaporation and Capillary Effects[J]. Chinese Journal of Analytical Chemistry, 2005, 33:423-427(in Chinese)
[10] KIM H Y, IKEHARA Y, KIM J I, et al. Martensitic Transformation, Shape Memory Effect and Superelasticity of Ti-Nb Binary Alloys[J]. ACTA Materialia, 2006, 54(9):2419-2429
[11] VILLOSLADA A, FLORES A, COPACI D, et al. High-Displacement Flexible Shape Memory Alloy Actuator for Soft Wearable Robots[J]. Robotics and Autonomous Systems, 2015, 73:91-101
[12] 高飞, 王玉魁, 王振龙,等. 形状记忆合金丝驱动的仿生墨鱼水下机器人的原型设计[J]. 机器人,2013,35(3):346-351 GAO Fei, WANG Yukui, WANG Zhenlong, et al. Prototype Design of a Kind of Biomimetic Cuttlefish Underwater Robot Actuated by SMA Wires[J]. Robot, 2013, 35(3):346-351(in Chinese)
[13] DAHMARDEH M, SETAREHDAN S K. Finite Element Analysis of Thermally Actuated Medical Stent and Staple Implants Using Shape Memory Alloy[J]. International Journal of Nanotechnology, 2017, 14(1/2/3/4/5/6):66-74
[14] SASSA F, AI Z Y, GINOZA T, et al. Miniaturized Shape Memory Alloy Pumps for Stepping Microfluidic Transport[J]. Sensors and Actuators, 2012, 165(1):157-163
[15] 周博. 形状记忆合金的本构模型[D]. 哈尔滨:哈尔滨工程大学,2006 ZHOU Bo. The Constitutive Models of Shape Memory Alloys[D]. Harbin:Harbin Engineering University, 2006(in Chinese)
[16] SEDLAK P, FROST M, BENESOVA B, et al. Thermomechanical Model for NITI-Based Shape Memory Alloys Including R-Phase and Material Anisotropy under Multi-Axial Loadings[J]. International Journal of Plasticity, 2012, 30:132-151