论文:2020,Vol:38,Issue(2):319-324
引用本文:
贾旭宏, 杨晓光, 黄松, 智茂永, 朱新华. 低压条件下航空地毯燃烧特性研究[J]. 西北工业大学学报
JIA Xuhong, YANG Xiaoguang, HUANG Song, ZHI Maoyong, ZHU Xinhua. Study on Combustion Properties of Aviation Carpet under Low Ambient Pressure[J]. Northwestern polytechnical university

低压条件下航空地毯燃烧特性研究
贾旭宏, 杨晓光, 黄松, 智茂永, 朱新华
中国民用航空飞行学院 民航安全工程学院, 四川 广汉 618307
摘要:
民用飞机舱内阻燃材料的火灾危险性对客机的安全运行造成了一定的威胁。正常运输条件下民用飞机客舱压力一般维持在75~84 kPa,该压力下航空地毯的燃烧行为将发生变化。以民用客机地毯为实验材料,分别在四川广汉(海拔520 m)和康定机场(海拔4 290 m)开展实验,研究低压环境下航空地毯的燃烧特性。结果表明,低压环境下航空地毯的烟密度大幅升高,氧体积含量下降速度更快,CO2含量上升速度增加。燃烧开始时CO含量小于常压,但在4.00 min后生成量急剧增加。此外,低压环境下航空地毯的点燃时间更短。
关键词:    低压    烟密度    燃烧特性    航空地毯    点燃时间   
Study on Combustion Properties of Aviation Carpet under Low Ambient Pressure
JIA Xuhong, YANG Xiaoguang, HUANG Song, ZHI Maoyong, ZHU Xinhua
College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan 618307, China
Abstract:
The flame-retardant materials in the cabin of civil aircraft is possible to induce fire accident, which can cause certain threat to the operation safety of aircraft. The cabin pressure of civil aircraft is generally maintained at 75~84 kPa under normal transport condition, and the combustion behavior of aviation carpet will change under this pressure. Combustion properties of an aviation carpet, selected from civil aircraft, were studied at Guanghan City (520 m altitude) and Kangding airport (4290 m altitude), Sichuan province of China in this work, respectively. The results showed that the smoke density of the aviation carpets increased sharply and the decreasing rate of the oxygen volume fraction became more quickly under low pressure. Furthermore, the rising rate of carbon dioxide volume fraction also became rapidly with the decrease of the ambient pressure. The content of the carbon monoxide under low pressure was lower than that under normal pressure at the beginning of the combustion. However, the carbon monoxide production increased sharply when the combustion lasted for 4 minutes. In addition, the ignition time of the aviation carpet was shorter under low pressure.
Key words:    low pressure    smoke density    combustion properties    aviation carpets    ignition time   
收稿日期: 2019-03-05     修回日期:
DOI: 10.1051/jnwpu/20203820319
基金项目: 自然基金民航联合研究基金重点项目(U1633203)资助
通讯作者:     Email:
作者简介: 贾旭宏(1985-),中国民用航空飞行学院副教授,主要从事民用飞机非金属材料燃烧特性与灭火剂合成研究。
相关功能
PDF(933KB) Free
打印本文
把本文推荐给朋友
作者相关文章
贾旭宏  在本刊中的所有文章
杨晓光  在本刊中的所有文章
黄松  在本刊中的所有文章
智茂永  在本刊中的所有文章
朱新华  在本刊中的所有文章

参考文献:
[1] 郭惠敏. 生态纺织技术在民机客舱内饰中的应用[D]. 上海:东华大学, 2016 GUO Huimin. Research of Ecological Textile Technology Application in the CivilI Aircraft Cabin Design[D]. Shanghai:Donghua University, 2016(in Chinese)
[2] Federal Aviation Administration. 14 CFR Part 25, §25.841-Pressurized Cabins[EB/OL].(2014-11-04)[2019-03-03]. https://www.ecfr.gov/cgi-bin/text-idx?node=pt14.1.25&rgn=div5#se14.1.25_1841
[3] MCALEVY R F, MAGEE R S. The Mechanism of Flame Spreading over the Surface of Igniting Condensed-Phase Materials[J]. Symposium on Combustion,1968, 12(1):215-227
[4] GOLDMEER J S, T'IEN J S, URBAN D L. Combustion and Extinction of Pmma Cylinders during Depressurization in Low-Gravity[J]. Fire Safety Journal, 1999, 32(1):61-88
[5] 孔文俊, 劳世奇, 张培元, 等. 功能模拟微重力下导线的可燃性[J]. 燃烧科学与技术, 2006, 12(1):1-4 KONG Wenjun, LAO Shiqi, ZHANG Peiyuan, et al. Study on Wire Insulation Flammability at Microgravity by Functional Simulation Method[J]. Journal of Combustion Science and Technology, 2006, 12(1):1-4(in Chinese)
[6] SAITOK K. Progress in Scale Modeling[M]. Berlin:Springer Netherlands, 2008
[7] NAKAMURA Y, YOSHIMURA N, ITO H, et al. Flame Spread over Electric Wire in Sub-Atmospheric Pressure[J]. Proceedings of the Combustion Institute, 2009, 32(2):2559-2566
[8] HU L, ZHANG Y, YOSHIOKA K, et al. Flame Spread over Electric Wire with High Thermal Conductivity Metal Core at Different Inclinations[J]. Proceedings of the Combustion Institute, 2015, 35(3):2607-2614
[9] HU L, LU Y, YOSHIOKA K, et al. Limiting Oxygen Concentration for Extinction of Upward Spreading Flames over Inclined Thin Polyethylene-Insulated Nicr Electrical Wires with Opposed-Flow under Normal-And Micro-Gravity[J]. Proceedings of the Combustion Institute, 2016, 36(2):3045-3053
[10] HIRSCH D, WILLIAMS J, BEESON H. Pressure Effects on Oxygen Concentration Flammability Thresholds of Polymeric Materials for Aerospace Applications[J]. Journal of Testing & Evaluation, 2006, 36(1):69-72
[11] HIRSCH D, WILLIAMS J, HARPER S, et al. Pressure Flammability Thresholds of Selected Aerospace Materials[C]//International Conference on Environmental Systems, 2010
[12] MCALLISTER S, FERNAADEZ-PELLO C, URBAN D, et al. Piloted Ignition Delay of Pmma In Space Exploration Atmospheres[J]. Proceedings of the Combustion Institute, 2009, 32(2):2453-2459
[13] MCALLISTER S, FERNANDEZ-PELLO C, URBAN D, et al. The Combined Effect of Pressure and Oxygen Concentration on Piloted Ignition of a Solid Combustible[J]. Combustion & Flame, 2010, 157(9):1753-1759
[14] FERERES S, LAUTENBERGER C, FERNANDEZ-PELLO C, et al. Mass Flux at Ignition in Reduced Pressure Environments[J]. Combustion & Flame, 2011, 158(7):1301-1306
[15] OSORIO A F, FERNANDEZ-PELLO C, URBAND L, et al. Limiting Conditions for Flame Spread in Fire Resistant Fabrics[J]. Proceedings of the Combustion Institute, 2013, 34(2):2691-2697
[16] ZONG R, KANG R, HU Y, et al. Modeling the Pyrolysis Study of Non-Charring Polymers under Reduced Pressure Environments[J]. Heat & Mass Transfer, 2018, 54(4):1135-1144
[17] SHI L, CHEW M Y L, LIU X, et al. An Experimental and Numerical Study on Fire Behaviors of Charring Materials Frequently Used in Buildings[J]. Energy & Buildings, 2017, 138:140-153
[18] THOMSEN M, MURPHY D C, FERNANDEZ-PELLO C, et al. Flame Spread Limits(LOC) of Fire Resistant Fabrics[J]. Fire Safety Journal, 2017, 91:259-265
[19] KANSA E J, PERLEE H E, CHAIKEN R F. Mathematical Model of Wood Pyrolysis Including Internal Forced Convection[J]. Combustion & Flame, 1977, 29(3):311-324
[20] BLASI C D. Modeling and Simulation of Combustion Processes of Charring and Non-Charring Solid Fuels[J]. Progress in Energy & Combustion Science, 1993, 19(1):71-104
[21] 郄军芳. 辐射方向和海拔高度对固体可燃物热解及着火特性影响的实验研究[D]. 合肥:中国科学技术大学, 2011 QIE Junfang. Experimental Study of the Influences of Orientation and Altitude on Pyrolysis and Ignition of Solid Combustibles[D]. Hefei:University of Science and Technology of China, 2011(in Chinese)
[22] DAI J, YANG L, ZHOU X, et al. Experimental and Modeling Study of Atmospheric Pressure Effects on Ignition of Pine Wood at Different Altitudes[J]. Energy & Fuels, 2010, 24(1):609-615
[23] LAUTENBERGER C, TORERO J, FERNANDEZ-PELLO C. Understanding Materials Flammability//Flammability Testing of Materials Used in Construction Transport & Mining[M]. UK, Woodhead Rublishing, 2006:1-21
[24] QUINTIERE J G. Ignition of Liquids//Fundamentals of Fire Phenomena[M]. New York:John Wiley & Sons, Ltd, 2006:135-158
[25] TORERO J. Flaming Ignition of Solid Fuels//SFPE Handbook of Fire Protection Engineering[M]. New York:Springer, 2016:633-661
[26] ANNARATONE D. Introduction to Heat Transfer//Engineering Heat Transfer[M]. Berlin:Heidelberg, Springer-Verlag, 2010:B37-B38