论文:2020,Vol:38,Issue(2):271-278
引用本文:
刘少伟, 白俊强, 余培汛, 陈保, 周伯霄. 考虑声爆特性的超声速客机气动优化设计[J]. 西北工业大学学报
LIU Shaowei, BAI Junqiang, YU Peixun, CHEN Bao, ZHOU Boxiao. Aerodynamic Optimization Design on Supersonic Transports Considering Sonic Boom Intensity[J]. Northwestern polytechnical university

考虑声爆特性的超声速客机气动优化设计
刘少伟, 白俊强, 余培汛, 陈保, 周伯霄
西北工业大学 航空学院, 陕西 西安 710072
摘要:
提高巡航气动效率和降低声爆强度是超声速客机设计的关键。首先建立了基于RANS方程的近场CFD预测和基于波形参数法的远场预测相结合的高精度声爆评估方法,然后采用有限差分法求解声爆目标对设计变量的梯度,与由离散伴随方程法求解的气动目标函数的梯度进行组装,作为权重目标值的梯度,并耦合自由型面变形参数化技术、基于逆距离权重插值算法的网格变形技术和序列二次规划算法,搭建了考虑声爆特性的气动优化系统。对超声速公务机翼身组合体构型先后进行了考虑声爆的机头偏转气动优化设计和机翼精细化气动减阻优化设计,优化目标分别为声爆值和阻力系数的权重之和、超声速巡航点阻力系数。结果表明,优化后机头下偏削弱了头部向下传播的激波强度,从而减小了远场声爆最大过压值;机翼精细化设计后阻力减幅达9.5%,载荷内移,外翼段压差阻力减小,同时压力分布形态表现出逆压梯度减弱、压力恢复更加平缓的特征。气动声爆综合特性明显优于初始构型,验证了优化系统的有效性。
关键词:    离散伴随方法    超声速客机    气动优化设计    声爆    波形参数法   
Aerodynamic Optimization Design on Supersonic Transports Considering Sonic Boom Intensity
LIU Shaowei, BAI Junqiang, YU Peixun, CHEN Bao, ZHOU Boxiao
School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
It is key points to improve the aerodynamic efficiency and decrease the sonic-boom intensity for the supersonic aircraft design. Sonic-boom prediction method with high precision combining the near-field sonic-boom prediction based on Reynolds-Averaged Navier-Stokes equations and the far-field sonic-boom prediction based on waveform parameter method is firstly established. Then the gradient of sonic boom with respect to the design variables is calculated by the finite difference method and is combined with the gradient of the aerodynamic object by the discrete adjoint technique, acting as the gradient of the weighed object function. Assembling two gradients, the optimization system couples Free Form Deform method、the dynamic mesh technique based on Inverse Distance Weighting interpolation method、the gradient-based optimization algorithm based on the sequential quadratic programming. Using the aerodynamic optimization system considering the sonic boom intensity, the paper conducts a nose angle deflection optimization design and an elaborate aerodynamic optimization including huge design variables and constraints on a supersonic business jet, while the optimization objects are the weighed object and the supersonic cruise drag coefficient. The results show that the nose is deflected downward and the shock wave pattern is changed, leading to a lower far-field maximum overpressure; the drag is decreased by 15.8 counts, and the wing load is moved inboard, also, the pressure drag of the outer wing reduces. Meanwhile, the pressure distribution in the outer wing has a weaker adverse pressure gradient and a more gentle pressure recovery. After optimization, the low-drag and low-sonic boom configuration is obtained, which verified the effectiveness of the optimization system.
Key words:    discrete adjoint method    supersonic aircraft    aerodynamic optimization design    sonic boom    waveform parameter method   
收稿日期: 2019-04-11     修回日期:
DOI: 10.1051/jnwpu/20203820271
通讯作者:     Email:
作者简介: 刘少伟(1994-),西北工业大学博士研究生,主要从事飞行器气动优化设计及深度学习方法研究。
相关功能
PDF(1026KB) Free
打印本文
把本文推荐给朋友
作者相关文章
刘少伟  在本刊中的所有文章
白俊强  在本刊中的所有文章
余培汛  在本刊中的所有文章
陈保  在本刊中的所有文章
周伯霄  在本刊中的所有文章

参考文献:
[1] 昂海松. 大型飞机的总体布局设计分析[J]. 航空制造技术, 2009(2):38-43 ANG Haisong. General Layout Design Analysis of Large Aircraft[J]. Aeronautical Manufacturing Technology, 2009(2):38-43(in Chinese)
[2] KIM H J, SASAKI D, OBAYASHI S, et al. Aerodynamic Optimization of Supersonic Transport Wing Using Unstructured Adjoint Method[J]. AIAA Journal, 2001, 56:1011-1020
[3] REUTHER J, ALONSO J J, RIMLINGER M J, et al. Aerodynamic Shape Optimization of Supersonic Aircraft Configurations via an Adjoint Formulation on Distributed Memory Parallel Computers[J]. Computers & Fluids, 1999, 28(4):675-700
[4] National Research Council. High Speed Research Aeronautics and Space Engineering Board U.S. Supersonic Commercial Aircraft:Assessing NASA's High Speed Research Program[M]. Washington, D C, National Academy Press, 1997
[5] 冯晓强,宋笔锋,李占科, 等. 超声速飞机低声爆布局混合优化方法研究[J]. 航空学报, 2013, 34(8):1768-1777. FENG Xiaoqiang, SONG Bifeng, LI Zhanke, et al. Hybrid Optimization Approach Reaseach for Low Sonic Boom Supersonic Aircraft Configuration[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(8):1768-1777(in Chinese)
[6] SAKATA K. Supersonic Experimental Airplane(NEXST) for Next Generation SST Technology[R]. AIAA-2002-0527
[7] JOHN Morgenstern, NICOLE Norstrud, MARC Stelmack. Final Report for The Advanced Concept Studies for Supersonic Commercial Transports Entering Service in the 2030 to 2035 Period[R]. NASA/CR-2010-216796
[8] 冯晓强. 超声速客机低声爆机理及设计方法研究[D]. 西安:西北工业大学, 2014:15 FENG X Q. The Research of Low Sonic Boom Mechanism and Design Method of Supersonic Aircraft[D]. Xi'an:Northwestern Polytechnical University, 2014:15(in Chinese)
[9] 李立,白俊强,郭同彪. 基于伴随方法的超音速客机气动优化设计[J]. 西北工业大学学报,2017, 36(12):3785-3797 LI Li, BAI Junqiang, GUO Tongbiao. Aerodynamic Optimization Design of the Supersonic Aircraft Based on Discrete Adjoint Method[J]. Journal of Northwestern Polytechnical University, 2017, 36(12):3785-3797(in Chinese)
[10] MARTINS J R, LAMBE A B. Multidisciplinary Design Optimization:a Survey of Architectures[J]. AIAA Journal, 2013, 51(9):2049-2075
[11] 陈颂. 基于梯度的气动外形优化设计方法及应用[D]. 西安:西北工业大学, 2016 CHEN Song. Gradient Based Aerodynamic Shape Optimization Design and Application[D]. Xi'an:Northwestern Polytechnical University, 2016(in Chinese)
[12] THOMAS C L. Extrapolation of Sonic Boom Pressure Signatures by the Waveform Parameter Method[R]. NASA TND-6832, 1972
[13] RALLABHANDI S, LOUBEAU A. Summary of Propagation Cases of the Second AIAA Sonic Boom Prediction Workshop[R]. AIAA-2017-3257
[14] PARK M A, NEMEC M. Near Field Summary and Statistical Ananalysis of the Second AIAA Sonic Boom Prediction Workshop[R]. AIAA-2017-3256
[15] LUKE E, COLLINS E, BLADES E. A Fast Mesh Deformation Method Using Explicit Interpolation[J]. Journal of Computational Physics, 2012, 231(2):586-601
[16] NOCEDAL J, WRIGHT S J. Numerical Optimization[M]. New York:Springer, 1999:526-572
[17] NADARAJAH S, JAMESON A. A Comparison of the Continuous and Discrete Adjoint Approach to Automatic Aerodynamic Optimization[J]. AIAA Paper, 2000, 667:2000
[18] CHAMBERS J. Innovation in Flight Research at the NASA Langley Research Center on Revolutionary Advanced Concept for Aeronautics[R]. NACA SP-2005-4539
[19] ANDREA Minelli. Aero-Acoustic Shape Optimization of a Supersonic Business Jet. Analysis of PDEs[D]. Nice, France:Université Nice Sophia Antipolis, 2013
相关文献:
1.李占科, 刘秧, 丁玉临, 雷知锦, 马博平.静音锥对超声速民机低声爆效果的影响[J]. 西北工业大学学报, 2019,37(1): 203-210
2.李立, 白俊强, 郭同彪, 傅子元, 陈颂.基于伴随方法的超声速客机机翼气动优化设计[J]. 西北工业大学学报, 2017,35(5): 843-849
3.李占科, 张旭, 冯晓强, 关晓辉.双向飞翼超声速客机激波阻力和声爆研究[J]. 西北工业大学学报, 2014,32(4): 517-522