论文:2020,Vol:38,Issue(1):114-120
引用本文:
张烔, 杨晨, 吴虎, 李进广. 基于时间推进的轴流压气机准二维性能分析[J]. 西北工业大学学报
ZHANG Tong, YANG Chen, WU Hu, LI Jinguang. Quasi-2D Performance Analysis for Axial Compressors Based on Time-Marching Method[J]. Northwestern polytechnical university

基于时间推进的轴流压气机准二维性能分析
张烔, 杨晨, 吴虎, 李进广
西北工业大学 动力与能源学院, 陕西 西安 710072
摘要:
为实现多级轴流压气机的快速性能分析,开发了一种基于时间推进的准二维性能分析模型。该模型基于Euler方程,加入无黏叶片力模型和黏性力模型等源项用以模拟压气机中的诸多流动现象,同时对叶片区流线进行修正以处理叶片前缘间断问题。为验证模型的有效性,采用3.5级轴流压气机PW3S1和某1.5级高速轴流压气机进行验证,并完成了2个算例在不同转速下的总体参数特性计算。计算结果与试验数据和全三维计算结果进行比较:在PW3S1算例中计算压比和效率的平均误差分别为0.52%和0.63%,在1.5级压气机算例中分别为1.73%和2.91%,同时实现了激波的捕捉及堵塞工况的自动预测。
关键词:    轴流压气机    性能分析    时间推进    准二维模型   
Quasi-2D Performance Analysis for Axial Compressors Based on Time-Marching Method
ZHANG Tong, YANG Chen, WU Hu, LI Jinguang
School of Power and Energy, Northwestern Polytechnic University, Xi'an 710072, China
Abstract:
In order to get a fast performance analysis tool for multi-stage axial compressors, a quasi-two dimensional analysis model based on time-marching method is developed in this paper. The model is based on Euler equation, and several source terms, like inviscid blade force model and viscous force model, are added to simulate different phenomena of compressor internal flow. The flow line in blade area is adjusted to solve the discontinuity problem at blade leading edge. Two test cases-PW3S1, a 3.5-stage axial compressor and a 1.5-stage high-speed axial compressor, are presented to validate the quasi-2D model. The overall performance characteristics of two compressors at different rotation speed are calculated then. The computed results are compared with experimental data or 3D results. The average errors of pressure ratio and efficiency are 0.52% and 0.63% in PW3S1 case, 1.73% and 2.91% in 1.5-stage compressor case, and the model is able to capture shock wave and to predict choke condition.
Key words:    axial compressors    performance analysis    time-marching    quasi-2D model   
收稿日期: 2019-05-02     修回日期:
DOI: 10.1051/jnwpu/20203810114
通讯作者: 吴虎(1963-),西北工业大学教授、博士生导师,主要从事燃气轮机气动热力学研究。e-mail:wuhu@nwpu.edu.cn     Email:wuhu@nwpu.edu.cn
作者简介: 张烔(1994-),女,西北工业大学硕士研究生,主要从事叶轮机械计算流体力学研究。
相关功能
PDF(1881KB) Free
打印本文
把本文推荐给朋友
作者相关文章
张烔  在本刊中的所有文章
杨晨  在本刊中的所有文章
吴虎  在本刊中的所有文章
李进广  在本刊中的所有文章

参考文献:
[1] NICLAS Falck. Axial Flow Compressor Mean Line Design[D]. Sweden:Lund University,2008
[2] 张军. 多级轴流压气机方案设计与特性计算研究[D].北京:北京理工大学, 2016 ZHANG Jun. Preliminary Design and Performance Calculation for Multistage Axial Flow Compressor[D]. Beijing:Beijing Institute of Technology, 2016(in Chinese)
[3] 钟勇健. 多级轴流压气机一维性能计算与优化研究[D]. 上海:上海交通大学, 2014 ZHONG Yongjian. Mean Line Performance Calculation and Optimization of Multi-Stage Axial Compressor[D]. Shanghai:Shanghai Jiaotong University, 2014(in Chinese)
[4] LÉONARD O, ADAM O. A Quasi-One-Dimensional CFD Model for Multistage Turbomachines[J]. Journal of Thermal Science, 2008, 17(1):7-20
[5] DU W H, LÉONARD O. A Quasi-One-Dimensional CFD Model for Multistage Compressors[C]//Proceedings of ASME Turbo Expo:Turbine Technical Conference & Exposition. Vancouver, 2011:101-112
[6] YANG C, WU H, YANG J, et al. Time-Marching Throughflow Analysis of Multistage Axial Compressors Based on a Novel Inviscid Blade Force Model[J]. Journal of Aerospace Engineering, 2019, 233(14):5239-5252
[7] 杨金广, 王春雪, 王大磊, 等. 基于时间推进的通流计算方法:现状及展望[J]. 航空学报,2017,38(9):58-70 YANG Jinguang, WANG Chunxue, WANG Dalei, et al. Time Marching Based Throughflow Method:Current Status and Future Development[J]. Acta Aeronautica et Astronautica Sinica,2017,38(9):58-70(in Chinese)
[8] BARALON S, ERIKSSON L, HALL U. Validation of a Throughflow Time-Marching Finite-Volume Solver for Transonic Compressors[C]//International Gas Turbine & Aeroengine Congress & Exhibition, Stockholm, 1998:98
[9] HIRSCH C, WARZEE G. A Finite-element Method for throughflow Calculations in Turbomachines[J]. Journal of Fluid Engineering, 1976, 98(3):414-419
[10] CETIN M, UCER A, HIRSCH C, et al. Application of Modified Loss and Deviation Correlations to Transonic Axial Compressors[R]. AGARD R-745,1987
[11] LIEBLEIN S. Incidence and Deviation-Angle Correlations for Compressor Cascades[J]. Journal of Fluids Engineering, 1960, 82(3):584-585
[12] CREVELING H, CARMODY R. Axial Flow Compressor Computer Program for Calculating Off-Design Performance[R]. NASA, CR-72427, 1968
[13] KOCH C, SMITH L. Loss Sources and Magnitudes in Axial Flow Compressors[J]. ASME J Eng for Power 1976, 98(3):411-424
[14] HOWELL A. Fluid Dynamics of Axial Compressors[J]. Preceedings of the Institution of Mechanical Engineers, 1945, 153:441-452
[15] AUNGIER R, FAROKHI S. Axial-Flow Compressors:a Strategy for Aerodynamic Design and Analysis[J]. Applied Mechanics Reviews, 2004, 57(4):22
[16] SARAYANAMUTTOO H, ROGERS G, COHEN H. Gas Turbine Theory[M]. 6th Edition. Harlow:Pearson Education, 2009
[17] ROBERTS W B, SEROVY G K, SANDERCOCK D M. Modeling the 3D Flow Effects on Deviation Angle for Axial Compressor Middle Stages[J]. ASME Journal of Engineering for Gas Turbines and Power, 1986, 108:131-137
[18] BURDSALL E A, CANAL E J, LYONS K A. Core Compressor Exit Stage Study-I. Aerodynamic and Mechanical Design[R]. NASA Contract Report CR-159714, 1979
[19] NIEHUIS R, BOHNE A, HOYNACKI A. Experimental Investigation of Unsteady Flow Phenomena in a Three Stage Axial Compressor[J]. Proc IMechE, Part A:J Power and Energy 2003; 217:341-348