论文:2019,Vol:37,Issue(6):1285-1293
引用本文:
董胜, 袁朝辉, 张建锐, 马尚君. 基于运动发散分量动力学的双足机器人行走策略研究[J]. 西北工业大学学报
DONG Sheng, YUAN Zhaohui, ZHANG Jianrui, MA Shangjun. Study on Walking Strategy of Biped Robot Based on Dynamics of Divergent Component of Motion[J]. Northwestern polytechnical university

基于运动发散分量动力学的双足机器人行走策略研究
董胜1, 袁朝辉1, 张建锐1,2, 马尚君3
1. 西北工业大学 自动化学院, 陕西 西安 710129;
2. 陇东学院 机械工程学院, 甘肃 庆阳 745000;
3. 西北工业大学 机电学院, 陕西 西安 710072
摘要:
基于线性倒立摆(LIP)模型,将双足机器人的多步行走等效成三维倒立摆的多次摆动,在运动发散分量(DCM)概念的基础上,研究了以质心(COM)和DCM表示的动力学方程。设计了2种DCM闭环控制器:一步DCM终值不变抗扰动控制器和实时DCM轨迹跟踪闭环控制器。2种控制器都可以有效地抑制扰动,使实际机器人的DCM不发散,并使用其规划出了双足行走过程中的COM轨迹。依据COM轨迹和双腿末端轨迹推导了求解双足机器人逆运动学的数值方法,整体上完成了双足行走过程中从输入脚印到输出关节角度的整套求解问题,使双足步态规划的方法体系化。最后,结合一个普适机器人模型,针对文中的算法在MATLAB平台上进行了仿真,仿真结果验证了该新方法的有效性。
关键词:    双足机器人    线性倒立摆    运动发散分量    步态规划    逆运动学   
Study on Walking Strategy of Biped Robot Based on Dynamics of Divergent Component of Motion
DONG Sheng1, YUAN Zhaohui1, ZHANG Jianrui1,2, MA Shangjun3
1. School of Automatic Control, Northwestern Polytechnical University, Xi'an 710129, China;
2. College of Mechanical Engineering, Longdong University, Qingyang 745000, China;
3. School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
In this paper, based on the linear inverted pendulum (LIP) model, the multi-walking of biped robot is analogous to the multi-swing of a three-dimensional inverted pendulum. In terms of the concept of ‘divergent component of motion (DCM)’, the dynamic equations expressed by using Center of Mass (COM) and DCM are studied. Two DCM closed-loop controllers are designed:one-step DCM terminal invariant disturbance rejection controller and real-time DCM trajectory tracking closed-loop controller. Both controllers can effectively suppress the disturbance, so that the DCM of the actual robot does not diverge, and which is used to plan the COM trajectory of the biped walking process. Based on the COM trajectory and biped end trajectory, the numerical method for solving inverse kinematics of biped robot is studied. The whole set of solving problems from input footprint to output joint angle in biped walking process is completed, and systematize the method of biped gait planning. Finally, combining with a ubiquitous robot model, all the algorithms in this paper are simulated via MATLAB platform. The simulation results verify the effectiveness of the method.
Key words:    biped robot    linear inverted pendulum    divergent component of motion    gait planning    inverse kinematics   
收稿日期: 2018-12-05     修回日期:
DOI: 10.1051/jnwpu/20193761285
基金项目: 国家自然科学基金(51505381,61705184)、甘肃省高等学校创新能力提升项目(2019A-113)资助
通讯作者:     Email:
作者简介: 董胜(1988-),西北工业大学博士研究生,主要从事液压伺服系统和智能机器人研究。
相关功能
PDF(1645KB) Free
打印本文
把本文推荐给朋友
作者相关文章
董胜  在本刊中的所有文章
袁朝辉  在本刊中的所有文章
张建锐  在本刊中的所有文章
马尚君  在本刊中的所有文章

参考文献:
[1] KAJITA S, KANEHIRO F, KANEKO K, et al. The 3D Linear Inverted Pendulum Mode:a Simple Modeling for a Biped Walking Pattern Generation[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems, Maui, Hawaii, 2001:239-246
[2] CHOI Y, KIM D, OH Y, et al. Posture/Walking Control for Humanoid Robot Based on Kinematic Resolution of COM Jacobian with Embedded Motion[J]. IEEE Trans on Robotics, 2007, 23(6):1285-1293
[3] KAJITA S, KANEHIRO F, KANEKO K, et al. Biped Walking Pattern Generation by Using Preview Control of Zero-Moment Point[C]//IEEE International Conference on Robotics & Automation, Taipei, 2003:1620-1626
[4] VUKOBRATOVIC M, STEPANENKO J. On the Stability of Anthropomorphic Systems[J]. Mathematical Biosciences, 1972, 15(1):1-37
[5] WIEBER P B. Trajectory Free Linear Model Predictive Control for Stable Walking in the Presence of Strong Perturbations[C]//IEEE-RAS International Conference on Humanoid Robots, Genova, 2006:137-142
[6] PRATT J, CARFF J, DRAKUNOV S, et al. Capture Point:a Step Toward Humanoid Push Recovery[C]//IEEE-RAS International Conference on Humanoid Robots. Genova, 2006:200-207
[7] TAKENAKA T, MATSUMOTO T, YOSHIIKE T, et al. Real Time Motion Generation and Control for Biped Robot, 1st Report:Walking Gait Pattern Generation[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, 2009:1084-1091
[8] ENGLSBERGER J, OTT C. Three-Dimensional Bipedal Walking Control Using Divergent Component of Motion[J]. IEEE Trans on Robotics, 2015, 31(2):355-368
[9] HOPKINS M A, HONG D W, LEONESSA A. Humanoid Locomotion on Uneven Terrain Using the Time-Varying Divergent Component of Motion[C]//IEEE-RAS International Conference on Humanoid Robots, Madrid, Spain, 2014:266-272
[10] 于昂可. 液压驱动双足机器人机构设计及其步态仿真[D]. 杭州:浙江大学,2015 YU Angke. Mechanism Design and Gait Simulation of Hydraulically Driven Biped Robot[D]. Hangzhou, Zhejiang University, 2015(in Chinese)
[11] ENGLSBERGER J, OTT C. Integration of Vertical COM Motion and Angular Momentum in an Extended Capture Point Tracking Controller for Bipedal Walking[C]//IEEE-RAS International Conference on Humanoid Robots, Osaka, 2012:183-189