论文:2019,Vol:37,Issue(6):1209-1222
引用本文:
史红艳, 赵先锋, 王自勤, 姜雪婷, 邹子川, 胡小龙. 断裂力学在塑性金属材料切削过程中应用的研究现状[J]. 西北工业大学学报
SHI Hongyan, ZHAO Xianfeng, WANG Ziqin, JIANG Xueting, ZOU Zichuan, HU Xiaolong. Research of Fracture Mechanics Applied in the Cutting Process of Plastic Metals[J]. Northwestern polytechnical university

断裂力学在塑性金属材料切削过程中应用的研究现状
史红艳1,2, 赵先锋1, 王自勤1, 姜雪婷1, 邹子川1, 胡小龙1
1. 贵州大学 机械工程学院, 贵州 贵阳 550025;
2. 贵州大学 教育部现代制造技术重点实验室, 贵州 贵阳 550025
摘要:
剪切理论是解释切削过程的主流观点,由于切削过程的复杂性,切削过程的物理现象使用剪切理论依然很难解释和准确预测。而有些物理现象恰恰使用断裂理论能够很好地解释,因此,随着断裂理论的成熟和发展,切削过程中的断裂现象又重新引起学者的关注。为总结断裂理论在切削过程的研究成果和关注重点,详细回顾断裂理论在研究切削过程中早期的发展和目前的应用,并简要讨论了断裂理论在研究切削过程中的发展方向,认为将断裂理论和剪切理论有机融合是研究切削机理的有效途径,并提出将切削过程分为6个阶段进行分析,以期将断裂理论和剪切理论进行融合分析。
关键词:    剪切理论    断裂理论    初始裂纹    剪切带    高应力区   
Research of Fracture Mechanics Applied in the Cutting Process of Plastic Metals
SHI Hongyan1,2, ZHAO Xianfeng1, WANG Ziqin1, JIANG Xueting1, ZOU Zichuan1, HU Xiaolong1
1. College of Mechanical Engineering, Guizhou University, Guiyang 550025, China;
2. Key Laboratory of Advanced Manufacturing Technology of the Ministry of Education, Guizhou University, Guiyang 550025, China
Abstract:
Shear theory is the mainstream view to explain the cutting process. Because of the complexity of the cutting process, it is still difficult to explain and predict the physical phenomena in the cutting process accurately by shear theory. While some physical phenomena can be well explained by fracture theory. At the same time, with the development of fracture theory, fracture phenomenon in cutting process has attracted scholarsattention again. Therefore, the early development and current application of fracture theory in the study of cutting process are reviewed in detail. The research results and key points of fracture theory in cutting process are summarized. The development direction of fracture theory in the cutting process is briefly discussed. It is considered that the integration of fracture theory and shear theory is an effective way to study cutting mechanism, and the cutting process is divided into six stages in order to integrate fracture and shear theory.
Key words:    shear theory    fracture theory    initial crack    shear band    high stress zone   
收稿日期: 2019-01-25     修回日期:
DOI: 10.1051/jnwpu/20193761209
基金项目: 国家自然科学基金(51765009)、贵州省科技厅-贵州大学联合基金(黔科合LH字[2017]7235号)与贵州大学2017年度学术新苗培养及创新探索专项(黔科合平台人才[2017]5788)资助
通讯作者: 赵先锋(1974-),贵州大学副教授、博士,主要从事切削仿真、刀具设计等研究。e-mail:zxf5111@126.com     Email:zxf5111@126.com
作者简介: 史红艳(1976-),女,贵州大学讲师、博士研究生,主要从事切削机理、CAD/CAE等研究。
相关功能
PDF(3025KB) Free
打印本文
把本文推荐给朋友
作者相关文章
史红艳  在本刊中的所有文章
赵先锋  在本刊中的所有文章
王自勤  在本刊中的所有文章
姜雪婷  在本刊中的所有文章
邹子川  在本刊中的所有文章
胡小龙  在本刊中的所有文章

参考文献:
[1] TIME I. Resistance of Metals and Wood to Cutting[M]. St Petersbourg, Russia, Dermacow Press House,1870
[2] ZVORYKIN K A, RABOTA I U. Neobkhodimyye Diya Otdeleniya Metallicheskoi Struzhki[J]. Teknickeskii Sbornik i Vesnik Promyshlennosti, 1896,123:57-96
[3] ERNST H, MERCHANT M E. Chip Formation, Friction and High Uality Machined Surfaces[J]. Surface Treatment of Metals, 1941, 29(9):299-378
[4] MERCHANT M E. Mechanics of the Metal Cutting ProcessⅠ. Orthogonal Cutting and a Type-2 Chips[J]. Journal of Applied Physics, 1945,16(5):267-275
[5] MERCHANT M E. Mechanics of the Metal Cutting ProcessⅡ. Plasticity Conditions in Orthogonal Cutting[J]. Journal of Applied Physics, 1945,16(5):318-324
[6] PIISPANEN V. Theory of Formation of Metal Chips[J]. Journal of Applied Physics, 1948,19(10):876-881
[7] HILL R. The Mathematical Theory of Plasticity[M]. London, Oxford University Press, 1950
[8] 史红艳,赵先锋,姜雪婷. 滑移线场理论在正交切削过程中的研究现状[J]. 华南理工大学学报,2019,47(1):14-31 SHI Hongyan, ZHAO Xianfeng, JIANG Xueting. Current Research on the Application of Slip Line Field Theory in the Orthogonal Cutting Process[J]. Journal of South China University of Technology, 2019,47(1):14-31(in Chinese)
[9] TRESCA H. Further Applications of the Flow of Solids[J]. Proceedings of the Institution of Mechanical Engineers, 1978, 30:301-345
[10] TRESCA H. MéMores Sur Le Rabotage Des MéTaux[J].Bulletin De LasociéTé' Encouragement Pour L'Industrienationale, 1873, 15:585-685
[11] UDAY Shankerdixit, MANJURI Hazarika, DAVIM J Paulo. A Brief History of Mechanical Engineering[M]. Berlin:Sporinger International Publishing, 2017
[12] MALLOCK A. The Action of Cutting Tools[J]. Proceedings of the Royal Society of London, 1881,33:127-139
[13] REULEAUX F. Vber Den Taylor Whiteschen Werkzeugstah[J]. Verein Sur Berforderung Des Gewerbefleissen in Preussen Sitzungsberichete, 1900,79:179-220
[14] KINGSBURY. Report of the Present Status and Future Problems in the Art of Cutting and Forming Metals[J]. ASME Committee Report, 1924(46):20-30
[15] TAYLOR F W. On the Art of Cutting Metals[J]. Transactions of ASME, 1907, 28:31-35
[16] MILTON C S. Metal Cutting Principles Second Edition[M]. New York, Oxford:Oxford University Press,2005
[17] INGLIS C E. Stress in a Plate Due to the Presence of Cracks and Sharp Corners[J]. Trans Roy Inst Naval Arch, 1913, 66:219-230
[18] GRIFFITH A A. The Phenomena of Rupture and Flow in Solid[J]. Philosophical Transaction of Royal Society of London, 1921, A221:163-197
[19] VIKTOR P A. A Treatise on Material Characterization in the Metal Cutting Process. Part 1:a Novel Approach and Experimental Verification[J]. Journal of Materials Processing Technology, 1999, 96:22-33
[20] ATKINS A G. Toughness and Cutting:a New Way of Simultaneously Determining Ductile Fracture Toughness and Strength[J]. Engineering Fracture Mechanics, 2005, 72:849-860
[21] ATKINS A G. Modeling Metal Cutting Using Modern Ductile Fracture Mechanics:Quantitative Explanations for Some Longstanding Problems[J]. International Journal of Mechanical Sciences, 2003, 45:373-396
[22] ATKINS A G. Fracture Toughness and Cutting[J]. International Journal of Production Research, 1974, 12(2):263-274
[23] VIKTOR P A, XIAO Xinran. A Methodology for Practical Cutting Force Evaluation Based on the Energy Spent in the Cutting System[J]. Machining Science and Technology, 2008, 12(3):325-347
[24] YALLAMUSSAA Bushawashi. Modeling of Metal Cutting as Purposeful Fracture of Work Material[D]. Lansin:Michigan State University, 2013
[25] UEDA K, SUGITA T, TSUWA H. Application of Fracture Mechanics in Micro-Cutting of Engineering Ceramics[J]. Ann CIRP, 1983, 32(1):83-86
[26] ERICSON M L, LINDBERG H. A Method of Measuring Energy Dissipation during Crack Propagation in Polymers with an Instrumented Ultramicrotome[J]. Journal of Materials Science, 1996, 31(3):655-662
[27] KARPAT Y. Investigation of the Effect of Cutting Tool Edge Radius on Material Separation Due to Ductile Fracture in Machining[J]. Int J Mech Sci, 2009, 51(7):541-546
[28] SATHYAN Subbiah, SHREYES N M. Effect of Finite Edge Radius on Ductile Fracture Ahead of the Cutting Tool Edge in Micro-Cutting of Al2024-T3[J]. Materials Science and Engineering A, 2008, 474:283-300
[29] IWATA K, UEDA K. A J-Integral Approach to Material Removal Mechanisms in Micro Cutting of Ceramics[J]. ANN CIRP, 1991,40(1):61-64
[30] CHIU W C, ENDRES W J, THOULESS M D. An Analysis of Surface Cracking during Orthogonal Machining of Glass[J]. Machining Science and Technology, 2001, 5(2):195-215
[31] Finnie I. Review of the Metal Cutting Theories of the Past Hundred Years[J]. Mechanical Engineering, 1956,78:715-721
[32] 吴惠贞,陈子文. 钢的切屑变形和断裂[J]. 华侨大学学报, 1993, 14(4):477-482 WU Huizhen, CHEN Ziwen. Chip Deformation and Fracture of Steel[J]. Journal of Huaqiao University, 1993, 14(4):477-482(in Chinese)
[33] ATKINS Tony. The Science and Engineering of Cutting[M]. Netherlands:Elsevier,2009
[34] ATKINS Tony. The Science and Engineering of Cutting:the Mechanics and Process of Spavating, Scratching and Puncturing Biomaterials, Metals and Non-Metals[M]. Oxford, Butterworth-Heinemann, 2009
[35] ZHENG Z M, WIERZBICKI T. A Theoretical Study of Steady-State Wedge Cutting through Metal Plates[J]. International Journal of Fracture, 1996, 78(1):45-66
[36] WYETH D J, ATKINS A G. Mixed Mode Fracture Toughness as a Separation Parameter When Cutting Polymers[J]. Engineering Fracture Mechanics,2009,76:2690-2697
[37] KINLOCH A J, LAU C C, WILLIAMS J G. The Peeling of Flexible Laminates[J]. International Journal of Fracture,1994,66:45-70
[38] WILLIAMS J G. The Fracture Mechanics of Surface Layer Removal[J]. International of Journal Fracture, 2011, 170:37-48
[39] WILLIAMS J G, PATEL Y, BLACKMAN B R K. A Fracture Mechanics Analysis of Cutting and Machining[J]. Engineering Fracture Mechanics, 2010,77:293-308
[40] STAHLE P, SPAGNOLI A, TERZANO M. On the Fracture Processes of Cutting[J]. Procedia Structural Integrity, 2017,3:468-476
[41] LIU Hongguang, ZHANG Jun, XU Xiang, et al. Effect of Microstructure Evolution on Chip Formation and Fracture during High-Speed Cutting of Single Phase Metals[J]. The International Journal of Advanced Manufacturing Technology, 2017, 91(1/2/3/4):823-833
[42] TANG Linhu, GAO Chengxiu, SHEN Hao, et al. Mechanism of the Crack Propagation in the Chip Root in Dry Hard Orthogonal Turning of the Hardened Steel[J]. International Journal of Mechanical Sciences, 2018, 138/139:272-281
[43] DATTATRAYA Parle, RAMESH K S, SUHAS S J. Fracture Energy Evaluation Using J-Integral in Orthogonal Micro cutting[J]. Journal of Micro-and Nano-Manufacturing, 2016(4):1-9
[44] COOK N H, FINNIE I, SHAW M C. Discontinuous Chip Formation[J]. Journal of Manufacturing Science and Engineering,1954, 76(2):153-162
[45] SAMPATH W S, SHAW M S. Fracture on the Shear Plane in Continuous Cutting[J]. Manufacturing Engineering Transations, 1983(17):17281-17285
[46] ITAVA K, UEDA K. The Significance of the Dynamic Crack Behavior in Chip Formation[J]. Annals of the CIRP, 1976, 25:65-70
[47] DIDJANIN L, KOVAC P. Fracture Mechanisms in Chip Formation Processes[J]. Materials Science and Technology, 1997, 13:439-444
[48] VYAS A, SHAW M C. Mechanics of Saw-Tooth Chip Formation in Metal Cutting[J]. Journal of Manufacturing Science and Engineering Transation of the ASME, 1999, 121:163-172
[49] DONG G, ZHAOPENG H, RONGDI H, et al. Study of Cutting Deformation in Machining Nickel-Based Alloy Inconel 718[J]. International Journal of Machine Tools and anufacture, 2011, 51(6):520-527
[50] CUI X, ZHAO B, JIAO F, et al. Chip Formation and Its Effects on Cutting Force, Tool Temperature, Tool Stress, and Cutting Edge Wear in High-and Ultra-High-Speed Milling[J]. The International Journal of Advanced Manufacturing Technology, 2015:1-11
[51] 蒲春雷. 基于材料动态再结晶形为的高速切削机理研究[D]. 北京:北京科技大学, 2015 PU Chunlei. Research on High-Speed Cutting Mechanism Based on Material Dynamic Recrystallization Shape[D]. Beijing:Beijing University of Science and Technology, 2015(in Chinese)
[52] 段春争,王肇喜,李红华. 高速切削锯齿形切屑形成过程的有限元模拟[J]. 哈尔滨工程大学学报,2014,35(2):226-232 DUAN Chunzheng, WANG Zhaoxi, LI Honghua. Finite Element Simulation of Sawtooth Chip Formation Process in High Speed Cutting[J]. Journal of Harbin Engineering University, 2014, 35(2):226-232(in Chinese)
[53] Andrew Y C. Nee Handbook of Manufacturing Engineering and Technology[M]. London:Springer, 2014
[54] KLÖPPER C. Untersuchungen Zur Zerspanbarkeit Von Austenitisch-Ferritischem Gusseisen Mit Kugelgraphit(ADI)[D]. Aachen University, 2007
[55] 庆振华. 高强度钢42Cr Mo硬态切削切屑形成机理的研究[D]. 南京:南京航空航天大学, 2015 QING Zhenhua. Study on the Formation Mechanism of 42Cr Mo Hard Cutting Chips in High Strength Steel[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2015(in Chinese)
[56] GU Liyao, WANG Minjie, CHEN Hui, et al. Experimental Study on the Process of Adiabatic Shear Fracture in Isolated Segment Formation in High-Speed Machining of Hardened Steel[J]. The International Journal of Advanced Manufacturing Technology, 2016, 86(1/2/3/4):671-679
[57] 王兵. 高速切削时材料变形及断裂行为对切屑形成的影响机理研究[D]. 山东:山东大学, 2016 WANG Bing. Study on the Influence Mechanism of Material Deformation and Fracture Behavior on Chip forMation during High Speed Cutting[D]. Shandong:Shandong University, 2016(in Chinese)
[58] WANG B, LIU Z Q, SU G S, et al. Brittle Removal Mechanism of Ductile Materials with Ultrahigh-Speed Machining[J]. Journal of Manufacture Science and Engineering, 2015, 137(6):061002
[59] JIAN Zang, JUN Zhao, ANHAI Li, et al. Serrated Chip Formation Mechanism Analysis for Machining of Titanium Alloy Ti-6Al-4V Based on Thermal Property[J]. International Journal Advanced Manufacturing Technology, 2018, 98:119-127
[60] SU Rui, HUANG Chuanzhen, XU Longhua. Research on the Serrated Chip in the Milling of Compacted Graphite Iron by Cemented Carbide Tool[J]. The International Journal of Advanced Manufacturing Technology,2018, 99:1687-1698
[61] LIU Hongguang, ZHANG Jun, XU Xiang, et al. Experimental Study on Fracture Mechanism Transformation in Chips Egmentation of Ti-6Al-4V Alloys during High-Speed Machining[J]. Journal of Materials Processing Technology, 2018, 257:132-140
[62] ELBESTAWI M A, SRIVASTAVA A K, EL-WARDANY T I. A Model for Chip Formation during Machining of Hardened Steel[J]. CIRP Annals-Manufacturing Technology, 1996, 45(1):71-76
[63] 王敏杰, 谷丽瑶. 高速切削过程绝热剪切局部化断裂判据[J]. 机械工程学报, 2013, 49(1):156-163 WANG Minjie, GU Liyao. Adiabatic Shear Localized Fracture Criterion in High Speed Cutting Process[J]. Journal of Mechanical Engineering, 2013, 49(1):156-163(in Chinese)
[64] 叶贵根,薛世峰,仝兴华,等. 金属正交切削模型研究进展[J]. 机械强度, 2012,34(4):531-544 YE Guigen, XUE Shifeng, TONG Xinghua, et al. Advances in Orthogonal Cutting Models[J]. Journal of Mechanical Strength, 2012,34(4):531-544(in Chinese)