论文:2019,Vol:37,Issue(6):1148-1157
引用本文:
王李璨, 陈荣钱, 尤延铖, 陈正武, 邱若凡. 剪切层形态对声波传播与声源定位的影响研究[J]. 西北工业大学学报
WANG Lican, CHEN Rongqian, YOU Yancheng, CHEN Zhengwu, QIU Ruofan. Effects of Shear Layer Characteristics on Acoustic Propagation and Source Localization[J]. Northwestern polytechnical university

剪切层形态对声波传播与声源定位的影响研究
王李璨1, 陈荣钱1, 尤延铖1, 陈正武2, 邱若凡1
1. 厦门大学 航空航天学院, 福建 厦门 361102;
2. 中国空气动力研究与发展中心 气动噪声控制重点实验室, 四川 绵阳 621000
摘要:
声学风洞开口实验段的剪切层形态对气动噪声测量及声源定位有重要影响。以平行剪切层和扩张剪切层为对象研究了剪切层的厚度、扩张角、强度等因素对声波穿过剪切层传播规律以及声源定位的影响。剪切层的流场采用自相似的速度分布来构造,声传播模拟采用带源项的线化欧拉方程,声源定位使用基于Amiet理论的波束成形技术。研究结果表明:采用高精度的数值方法可以很好模拟声波穿过剪切层产生的折射、反射等现象;剪切层厚度、扩张角和强度等的变化对使用简化对流波动方程预测的垂直入射区影响较小,对上/下游区域影响较大,这主要体现在剪切层的存在改变了声传播的相位;剪切层厚度、扩张角和强度的增加,造成声波穿过有/无厚度剪切层的声场差别增大、基于Amiet理论定位的声源相对实际声源的位置偏移量增大。
关键词:    气动声学    风洞    剪切层    折射    声源定位   
Effects of Shear Layer Characteristics on Acoustic Propagation and Source Localization
WANG Lican1, CHEN Rongqian1, YOU Yancheng1, CHEN Zhengwu2, QIU Ruofan1
1. School of Aerospace Engineering, Xiamen University, Xiamen 361102, China;
2. Key Laboratory of Aerodynamic Noise Control, China Aerodynamics Research and Development Center, Mianyang 621000, China
Abstract:
The shear layer characteristics of an open-jet acoustic wind tunnel are of key importance on measurements of aeroacoustics. The effects of thickness, spreading angle and strength of shear layer on acoustic propagation and source localization are investigated through the mean/spreading shear layer with a self-similar velocity distribution. Based on the shear flow, the acoustic propagation is computed by the linearized Euler equations via a source term, and then source localization is obtained from beamforming technique combined with the theory of Amiet. Results show that the numerical method can precisely capture the refraction and reflection after sound traversing shear layer. The thickness, spreading angle and strength of the shear layer exerts little effects on the refracted region where sound wave nearly vertical incident, while mainly influence the corresponding up/downstream region in terms of phase change. Increment of thickness, spreading angle and strength of the shear layer increases the acoustic difference between the shear layer with and without thickness, and produces a larger error of source localization downstream of the actual position.
Key words:    aeroacoustics    wind tunnel    shear layer    refraction    source localization   
收稿日期: 2018-12-05     修回日期:
DOI: 10.1051/jnwpu/20193761148
基金项目: 国家自然科学基金(11602209)、气动噪声控制重点实验室开放课题(ANCL20180301)、福建省自然科学基金计划(2016J01029)与福建省自然科学基金(2016J06011)资助
通讯作者: 陈荣钱(1983-),厦门大学副教授,主要从事计算流体力学及飞行器气动设计研究     Email:
作者简介: 王李璨(1995-),厦门大学博士研究生,主要从事计算气动声学研究。
相关功能
PDF(3311KB) Free
打印本文
把本文推荐给朋友
作者相关文章
王李璨  在本刊中的所有文章
陈荣钱  在本刊中的所有文章
尤延铖  在本刊中的所有文章
陈正武  在本刊中的所有文章
邱若凡  在本刊中的所有文章

参考文献:
[1] OERLEMANS S, BROERSMA L, SIJTSMA P. Quantification of Airframe Noise Using Microphone Arrays in Open and Closed Wind Tunnels[J]. International Journal of Aeroacoustics, 2007, 6(4):309-333
[2] 于涛, 范洁川, 贾元胜. 现代航空声学风洞技术现状与发展[J]. 实验流体力学, 2007, 21(3):86-91 YU Tao, FAN Jiechuan, JIA Yuansheng. The Present Situation and Development of Modern Aeroacoustic Wind Tunnel Technique[J]. Journal of Experiments in Fluid Mechanics, 2007, 21(3):86-91(in Chinese)
[3] 张军, 陈鹏, 雷红胜,等. 航空声学风洞3/4开口试验平台地板对远场噪声测量的影响[J]. 航空学报, 2016, 37(8):2574-2582 ZHANG Jun, CHEN Peng, LEI Hongsheng, et al. Influence of a 3/4 Open Jet Floor on Far Field Noise Measurements in Aeroacoustic Wind Tunnel[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(8):2574-2582(in Chinese)
[4] SIJTSMA P, OERLEMANS S, TIBBE T G, et al. Spectral Broadening by Shear Layers of Open Jet Wind Tunnels[C]//AIAA/CEAS Aeroacoustics Conference, 2014
[5] PADOIS T, PRAX C, VALEAU V. Numerical Validation of Shear Flow Corrections for Beamforming Acoustic Source Localisation in Open Wind-Tunnels[J]. Applied Acoustics, 2013, 74(4):591-601
[6] AMIET R K. Refraction of Sound by a Shear Layer[J]. Journal of Sound and Vibration, 1978, 58(4):467-482
[7] SCHLINKER R H, AMIET R K. Refraction and Scattering of Sound by a Shear Layer[J]. The Journal of the Acoustical Society of America, 1981, 70(6):1797-1799
[8] AHUJA K K, TANNA H K, TESTER B J. An Experimental Study of Transmission, Reflection and Scattering of Sound in a Free Jet Flight Simulation Facility and Comparison with Theory[J]. Journal of Sound and Vibration, 1981, 75(1):51-85
[9] 张俊龙, 李征初, 卢翔宇. 开口风洞剪切层对传声器及其阵列测量影响试验研究[J]. 实验流体力学, 2018, 32(1):71-77 ZHANG Junlong, LI Zhengchu, LU Xiangyu. Experimental Research on the Influence of Open Jet Shear Layer on Microphone and Microphone Array Measurement[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(1):71-77(in Chinese)
[10] 张军, 王勋年, 张俊龙, 等. 开口风洞声阵列测量的剪切层修正方法[J]. 实验流体力学, 2018, 32(4):39-46 ZHANG Jun, WANG Xunnian, ZHANG Junlong, et al. Shear Layer Correction Methods for Open-Jet wind Tunnel Phased Array Test[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(4):39-46(in Chinese)
[11] MORFEY C L, JOSEPH P F. Shear Layer Refraction Corrections for Off-Axis Sources in a Jet Flow[J]. Journal of Sound and Vibration, 2001, 239(4):819-848
[12] DOBRZYNSKI W. Shear-layer Correction after Amiet under Consideration of Additional Temperature Gradient. Working Diagrams for Correction of Signals[R]. NASA 77741, 1984
[13] 王毅刚, 李方旭, 沈哲,等. 风洞射流和汽车绕流对声传播的影响[J]. 声学技术, 2017, 36(1):57-63 WANG Yigang, LI Fangxu, SHEN Zhe, et al. The Influence of Wind Tunnel Jet Flow and Airflow around Vehicle on Sound Propagation[J]. Technical Acoustics, 36(1):57-63(in Chinese)
[14] 沈哲, 王毅刚, 杨志刚,等. 基于剪切层扇形分层模型的射流声传播分析[J]. 同济大学学报, 2017, 45(4):596-601 SHEN Zhe, WANG Yigang, YANG Zhigang, et al. Acoustic Propagation Analysis of Jet Flow Based on Stratified Fan-Shaped Shear Layer Model[J]. Journal of Tongji University, 2017, 45(4):596-601(in Chinese)
[15] PORTEOUS R, GEYE T, MOREAU D, et al. A Correction Method for Acoustic Source Localisation in Convex Shear Layer Geometries[J]. Applied Acoustics, 2018, 130:128-132
[16] 邢超, 罗纪生. 声波与剪切流作用的数值模拟[J]. 航空动力学报, 2005, 20(1):8-12 XING Chao, LUO Jisheng. Numerical Simulation of Mixing Layer Effect on Sound Waves[J]. Journal of Aerospace Power, 2005, 20(1):8-12(in Chinese)
[17] 张雪, 陈宝, 卢清华. Amiet剪切层理论的角度折射验证研究[J]. 应用声学, 2014, 33(5):433-438 ZHANG Xue, CHEN Bao, LU Qinghua. Verification of Angle Refraction Correction Based on Amiet's Shear Layer Theory[J]. Journal of Applied Acoustics, 2014, 33(5):433-438(in Chinese)
[18] BOGEY C, BAILLY C, JUVÉ D. Computation of Flow Noise Using Source Terms in Linearized Euler's Equations[J]. AIAA Journal, 2002, 40(2):235-243
[19] REDONNET S, BULTE J. Numerical Investigation of the Refraction Effects by Jet Flows in Anechoic Wind Tunnels, with Application to NASA/LaRC Quiet Flow Facility[C]//21st AIAA/CEAS Aeroacoustics Conference, 2015
[20] CASALINO D. Finite Element Solutions of a Wave Equation for Sound Propagation in Sheared Flows[J]. AIAA Journal, 2012, 50(1):37-45
[21] BENNACEUR I, MINCU D C, MARY I, et al. Numerical Simulation of Acoustic Scattering by a Plane Turbulent Shear Layer:Spectral Broadening Study[J]. Computers & Fluids, 2016, 138:83-98
[22] ZHOU Q, HE F, SHEN M Y. Direct Numerical Simulation of a Spatially Developing Compressible Plane Mixing Layer:Flow Structures and Mean Flow Properties[J]. Journal of Fluid Mechanics, 2012, 711:437-468
[23] 杨茵, 陈迎春, 李栋. 不可压缩剪切层入口影响的实验研究[J]. 西北工业大学学报, 2017, 35(2):197-202 YANG Yin, CHEN Yingchun, LI Dong. The Influence of Incompressible Shear Layer Inflow Conditions on Mixing Layer Development[J]. Journal of Northwestern Polytechnical University, 2017, 35(2):197-202
[24] 陈荣钱. 基于声波传播方程的计算气动声学混合方法研究[D]. 南京:南京航空航天大学, 2012 CHEN Rongqian. Hybrid Methods for the Computational Aeroacoustics Based on Acoustic Propagation Equations[D]. Nanjing, Nanjing University of Aeronautics and Astronautics, 2012(in Chinese)
[25] WANG Y, YANG J, JIA Q, et al. An Improved Correction Method for Sound Source Drift in a Jet Flow and Its Application to a Wind Tunnel Measurement[J]. Acta Acustica United with Acustica, 2015, 101(3):642-649