论文:2019,Vol:37,Issue(6):1138-1147
引用本文:
严旭飞, 陈仁良, 辛冀. 直升机不同尾桨距卡滞后的着陆轨迹和操纵优化[J]. 西北工业大学学报
YAN Xufei, CHEN Renliang, XIN Ji. Helicopter Landing Trajectory Optimization after Tail Rotor Control Failure in Different Collective Pitch[J]. Northwestern polytechnical university

直升机不同尾桨距卡滞后的着陆轨迹和操纵优化
严旭飞1, 陈仁良1, 辛冀2
1. 南京航空航天大学 直升机旋翼动力学国家级重点实验室, 江苏 南京 210016;
2. 中国直升机设计研究所, 天津 300000
摘要:
计算并分析直升机遭遇不同尾桨距卡滞后的最优安全着陆和操纵过程。首先,将直升机不同尾桨距卡滞后的安全着陆问题表示成最优控制问题。然后,采用直接多重打靶法将最优控制问题离散为非线性规划问题,并进行数值求解。最后,分别计算样例直升机遭遇大尾桨距卡滞与小尾桨距卡滞后的最优安全着陆过程和操纵策略。结果表明:当尾桨卡滞在大桨距时,尾桨提供侧向力大,有利于使用较大的功率状态以较小的速度和下降率着陆,期间可以通过侧滑来保持航向稳定;当尾桨卡滞在小桨距时,尾桨提供侧向力小,有利于在经济速度附近飞行,但不利于着陆机动。若此时采用常规着陆,则触地时偏航角速度很大,容易造成危险。若此时采用自转着陆,则触地时偏航角速度很小,因此着陆更为安全。直升机尾桨距卡滞后安全着陆的轨迹优化方法可以得到直升机遭遇不同尾桨距卡滞后的最优着陆轨迹和操纵,从而为尾桨距卡滞飞行试验提供一定的参考。
关键词:    直升机    尾桨距卡滞    飞行动力学模型    最优控制问题    自转着陆   
Helicopter Landing Trajectory Optimization after Tail Rotor Control Failure in Different Collective Pitch
YAN Xufei1, CHEN Renliang1, XIN Ji2
1. National Key Laboratory of Science and Technology on Rotorcraft Aeromechanics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
2. China Helicopter Design and Research Institute, Tianjin 300000, China
Abstract:
This paper studies helicopter optimal landing and control procedure after tail rotor control failure (TRCF) in different collective pitch. The optimal control problem of landing after tail rotor control failure was solved numerically by direct multiple shooting method and sequential quadratic programming. A sample helicopter optimal landing procedures after tail rotor control failure in large collective pitch and small collective pitch were investigated respectively. As can be seen from the results, when the tail rotor is stuck at large collective pitch, the tail rotor provides a large lateral force, which facilitates landing with small forward speed and descent rate in a large power state. The pilot can maintain stability of heading by side slipping. When the tail rotor is stuck at small collective pitch, the tail rotor provides a small lateral force, which is favorable for flying near economic speed, but difficult for a safe landing. A normal landing maneuver will cause a high yaw rate at touchdown, which is dangerous. Therefore, autorotation is preferred during touchdown because the landing is more secure with small yaw rate. The trajectory optimization method of helicopter safe landing after tail rotor control failure can provide a reference for flight test.
Key words:    helicopter    tail rotor control failure    flight dynamics model    optimal control    autorotation   
收稿日期: 2018-11-02     修回日期:
DOI: 10.1051/jnwpu/20193761138
基金项目: 国家自然科学基金(11672128)资助
通讯作者:     Email:
作者简介: 严旭飞(1990-),南京航空航天大学博士研究生,主要从事直升机飞行力学与控制、直升机空气动力学研究。
相关功能
PDF(1551KB) Free
打印本文
把本文推荐给朋友
作者相关文章
严旭飞  在本刊中的所有文章
陈仁良  在本刊中的所有文章
辛冀  在本刊中的所有文章

参考文献:
[1] O'ROURKE M J. Simulation Model for Tail Rotor Failure[J]. Journal of Aircraft, 1994, 31(1):197-205
[2] LIU L, PINES D J. Analysis of US Civil Rotorcraft Accidents Caused by Vehicle Failure or Malfunction[C]//American Helicopter Society 61st Annual Forum Proceedings, Grapevine, 2005
[3] 孙杰,高艳辉. 直升机尾桨故障及其试飞研究[J].飞行力学, 2001, 19(4):67-69 SUN Jie, GAO Yanhui. The Helicopter Tail-Rotor Failure and the Flight Test[J]. Flight Mechanics, 2001, 19(4):67-69(in Chinese)
[4] 于琦, 章海红. 直升机尾桨机械性失效及试飞研究[J]. 飞行力学, 2008, 26(3):74-77 YU Qi, ZHANG Haihong. Analysis of the Tail-Rotor Failure from Mechanical Malfunction and Research in Flight Test[J]. Flight Mechanics, 2008, 26(3):74-77(in Chinese)
[5] FRANK L, THONGSAY V. US Army Airworthiness Approval for UH-60 Fly-by-Wire Aircraft Flight Testing[C]//American Helicopter Society 66th Annual Forum, Arizona, 2010
[6] STACEY K, DAVID A. The Yaw Return Maneuver-the Regulatory History, Future, and Impact on the Structural Design Loads[C]//American Helicopter Society 65th Annual Forum, Grapevine, Texas, 2009
[7] SINGH H K, PAWAR P M, GANGULI R, et al. On the Effect of Mass and Stiffness Unbalance on Helicopter Tail Rotor System Behavior[J]. Aircraft Engineering and Aerospace Technology, 2008, 80(2):129-138
[8] LI C G, SHU P, Ma X M, et al. Failure Analysis on Tailor Rotor Rod Components of a Helicopter[J]. Failure Analysis and Prevention, 2013, 8(6):346-349
[9] GOODMAN N, BAYOUMI A, BLECHERTAS V, et al. CBM Component Testing at the University of South Carolina:Ah-64 Tail Rotor Gearbox Studies[C]//AHS Technical Specialists' Meeting on Condition Based Maintenance Conference Proceedings, Virginia, 2009
[10] CHEREPINSKY I, DRISCOLL J T, KINKEAD W D, et al. Control Surface Failure Detection for Fly-by-Wire Aircraft[D]. U.S.Patent Application 8/032,269[P]. 2011-10-4
[11] WALTNER P J, KNAUST G. Tail Rotor Failure Recovery Controller[P]. U.S. Patent Application 10/124,889, 2018-11-13
[12] SOMERS T M, BONINO R K, CLEVE B R, et al. HUMS/MMIS as an Aviation Combat Multiplier[C]//American Helicopter Society 63rd Annual Forum Proceedings, Virginia, 2007
[13] RAJENDRAN S, GU D. Fault Tolerant Control of a Small Helicopter with Tail Rotor Failures in Hovering Mode[C]//11th IEEE International Conference on Control & Automation, 2014
[14] ANDREA R, RICCARDO B M, PIETRO S, et al. AW169 Loss of Tail Rotor Effectiveness Simulation[C]//43rd European Rotorcraft Forum, Forum, Milano, Italy, 2017
[15] BOTTASSO C L, MAISANO G, SCORCELLETTI F. Trajectory Optimization Procedures for Rotorcraft Vehicles, Their Software Implementation, and Applicability to Models of Increasing Complexity[J]. Journal of the American Helicopter Society, 2010, 55(3):1-12
[16] 孟万里, 陈仁良. 直升机单发失效后自转着陆轨迹优化[J]. 航空学报, 2011, 32(9):1599-1607 MENG Wanli, CHEN Renliang. Trajectory Optimization of Helicopter Autorotation Landing after One Engine Failure[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(9):1599-1607(in Chinese)
[17] MENG W, CHEN R. Study of Helicopter Autorotation Landing Following Engine Failure Based on a Six-Degree-of-Freedom Rigid-Body Dynamic Model[J]. Chinese Journal of Aeronautics, 2013, 26(6):1380-1388
[18] 孟万里. 直升机单台发动机失效后飞行轨迹优化研究和应用[D]. 南京:南京航空航天大学, 2014:13-33 MENG Wanli. Study and Application of Trajectory Optimization for Helicopter Flight after One Engine Failure[D]. Nanjing, Nanjing University of Aeronautics and Astronautics, 2014:13-33(in Chinese)
[19] 高正,陈仁良. 直升机飞行动力学[M]. 北京:科学出版社, 2003:168-184 GAO Zheng, CHEN Renliang. Helicopter Dynamics[M]. Beijing, Science Press, 2003:168-184(in Chinese)
[20] 严旭飞,陈仁良. 直升机尾桨完全失效后自转着陆轨迹优化[J]. 北京航空航天大学学报,2018,44(6):1203-1212 YAN Xufei, CHEN Renliang. Helicopter Autorotation Landing Optimization after Tail-Rotor Total Failure[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(6):1203-1212(in Chinese)
[21] 辛宏,高正. 直升机涡环区域边界包线的确定[J]. 气动实验与测量控制,1996, 10(1):14-19 XIN Hong, GAO Zheng. A Prediction of the Helicopter Vortex-Ring State Boundary[J]. Aerodynamic Experiment and Measurement & Control, 1996, 10(1):14-19(in Chinese)
[22] BETTS J T. Survey of Numerical Methods for Trajectory Optimization[J]. Journal of Guidance Control & Dynamics, 1998, 21(2):193-207
[23] KIM S. Certification of Transport Category Rotorcraft[S]. 29-2C, Washington:Federal Aviation Administration, Department of Transportation, 2014:57-146
[24] GILL P E. User's Guide for SNOPT Version 7:Software for Large-Scale Nonlinear Programming[D]. San Diego, University of California, 2007