论文:2019,Vol:37,Issue(6):1111-1119
引用本文:
沈洋, 刘莹莹, 周军. 基于太阳帆的太阳同步轨道转移方案[J]. 西北工业大学学报
SHEN Yang, LIU Yingying, ZHOU Jun. Sun-Synchronous Orbit Transfer Scheme Based on Solar Sail[J]. Northwestern polytechnical university

基于太阳帆的太阳同步轨道转移方案
沈洋, 刘莹莹, 周军
西北工业大学 精确制导与控制研究所, 陕西 西安 710072
摘要:
针对微纳卫星太阳帆的太阳同步轨道转移任务,使用加权组合控制律和太阳帆最优指向结合的方法进行轨道机动,提出了一种分段控制的策略来控制目标轨道的降交点地方时,对实际应用具有参考价值。理论和仿真结果表明,使用微纳卫星太阳帆可以完成太阳同步轨道转移任务,并保证降交点地方时和初值一致。此外,降交点地方时对太阳帆轨道机动效率具有一定的影响,使用分段控制策略在不同降交点地方时的轨道上均可完成任务。
关键词:    微纳卫星    太阳帆    太阳同步轨道    轨道控制   
Sun-Synchronous Orbit Transfer Scheme Based on Solar Sail
SHEN Yang, LIU Yingying, ZHOU Jun
Institute of Precision Guidance and Control, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
Aiming at the sun-synchronous orbit transfer task of the micro-nano satellite solar sail, the method of combining the weighted control law and the solar sail optimal direction is used for maneuvering the orbit, and a segmentation control strategy is proposed to control the local time of the descending node of target orbit. The theoretical and simulation results show that the sun-synchronous orbit transfer task can be completed by using the micro-nano satellite solar sail, and the local time of the descending node is consistent with the initial value. In addition, the local time of the descending node has a certain impact on the orbit maneuvering efficiency of the solar sail, and the task can be completed by using the segmentation control strategy on orbits with different local time of the descending node.
Key words:    micro-nano satellite    solar sail    sun-synchronous orbit    orbit control   
收稿日期: 2018-12-07     修回日期:
DOI: 10.1051/jnwpu/20193761111
基金项目: 国家自然科学基金(61761136001)与空间智能控制技术重点实验室基金(KGJZDSYS-2018-04)资助
通讯作者:     Email:
作者简介: 沈洋(1994-),西北工业大学硕士研究生,主要从事航天器轨道设计研究。
相关功能
PDF(1607KB) Free
打印本文
把本文推荐给朋友
作者相关文章
沈洋  在本刊中的所有文章
刘莹莹  在本刊中的所有文章
周军  在本刊中的所有文章

参考文献:
[1] 胡海岩. 太阳帆航天器的关键技术[J]. 深空探测学报, 2016, 3(4):334-344 HU Haiyan. Key Technologies of Solar Sail Spacecraft[J]. Journal of Deep Space4 Exploration, 2016, 3(4):334-344(in Chinese)
[2] 马定坤, 匡银, 杨新权. 微纳卫星发展现状与趋势[J]. 空间电子技术, 2017, 14(3):42-45 MA Dingkun, KUANG Yin, YANG Xinquan. Development Actual State and Trends of Nano-Satellite[J]. Space Electronic Technology, 2017, 14(3):42-45(in Chinese)
[3] WHORTON M, HEATON A, PINSON R, et al. NanoSail-D:the First Flight Demonstration of Solar Sails for Nanosatellites[J/OL](2008-08-11)[2019-11-28]. https://ntrs.nasa.gov/search.jsp?R=20090001899
[4] ALHORN D C, CASAS J P, AGASID E F, et al. Nanosail-D:The Small Satellite That Could![J/OL](2011-01-22)[2019-11-28]. https://digitalcommons.usu.edu/smallsat/2011/all2011/37/
[5] RIDENOURE R W, SPENCER D A, STETSON D A, et al. Status of the Dual CubeSat LightSail Program[C]//AIAA SPACE 2015 Conference and Exposition, California, 2015:4424
[6] RIDENOURE R, MUNAKATA R, DIAZ A, et al. LightSail Program Status:One Down, One to Go[J/OL](2015-07-31)[2019-11-28]. https://digitalcommons.usu.edu/smallsat/2015/all2015/32/
[7] 梁轲, 朱战霞. 基于直接配点法的远程交会轨道优化设计与仿真[J]. 系统仿真学报, 2012, 22(3):682-690 LIANG Ke, ZHU Zhanxia. Optimal Design and SDimulation of Long-Range Orbital Rendezvous Based on Direct Collocation Method[J]. Journal of System Simulation, 2012, 22(3):682-690(in Chinese)
[8] 沈红新, 李恒年. 静止卫星小推力多圈转移轨道间接优化[J]. 宇航学报, 2017, 38(10):1041-1047 SHEN Hongxin, Li Hengnian. Indirect Optimization of Low-Thrust Multi-Revoloution Orbit Transfers for Geostationary-Orbit Satellites[J]. Journal of Astronautics, 2017, 38(10):1041-1047(in Chinese)
[9] 尚海滨, 崔平远, 栾恩杰. 近地小推力转移轨道的加权组合指导策略[J]. 航空学报, 2007, 28(6):1419-1427 SHANG Haibin, CUI Pingyuan, LUAN Enjie. Guidance Scheme for Near-Earth Low-Thrust Orbit Transfers Using Blended Locally Optimal Laws[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(6):1419-1427(in Chinese)
[10] Yuichi Tsuda, Osamu Mori, Ryu Funase, et al. Achievement of IKAROS-Japanese Deep Space Solar Sail Demonstration Mission[J]. Acta Astronautica, 2013, 82:183-188
[11] WALKER M J H. A Set of Modified Equinoctial Orbit Elements[J]. Celestial Mechanics, 1986, 38(4):391-392
[12] 章仁为. 卫星轨道姿态动力学与控制[M]. 北京:北京航空航天大学出版社, 1998 ZHANG Renwei. Satellite Orbit Attitude Dynamics and Control[M]. Beijing, Beihang University Press, 1998(in Chinese)
[13] 龚胜平, 李俊峰. 太阳帆航天器动力学与控制[M]. 北京:清华大学出版社, 2015 GONG Shengping, LI Junfeng. Dynamics and Control of Solar Sail Spacecraft[M]. Beijing, Tsinghua University Press, 2015(in Chinese)
[14] FOLKNER W M, WILLIAMS J G, BOGGS D H, et al. The Planetary and Lunar Ephemerides DE430 and DE431[J]. Interplanetary Network Progress Report, 2014, 196:1-81
[15] COVERSTONE V L, PRUSSING J E. Technique for Escape from Geosynchronous Transfer Orbit Using a Solar Sail[J]. Journal of Guidance Control & Dynamics, 2003, 26(4):628-634
[16] 黄福铭, 杨小芹, 谭炜. 太阳同步轨道设计与控制[M]. 北京:国防工业出版社, 2015 HUANG Fuming, YANG Xiaoqin, TAN Wei. Design and Control of Solar Synchronous Orbit[M]. Beijing, National Defence Industrial Press, 2015(in Chinese)
[17] 郗晓宁, 王威. 近地航天器轨道基础[M]. 长沙:国防科技大学出版社, 2003 XI Xiaoning, WANG Wei. Fundamentals of Near-Earth Spacecraft Orbit[M]. Changsha, National University of Defence Technology Press, 2003(in Chinese)
[18] 陈罗婧, 王沫, 吕秋杰,等. 国外太阳帆薄膜材料选择及帆面展开方式研究进展[J]. 空间电子技术, 2015(3):18-26 CHEN Luojing, WANG Mo, LYU Qiujie, et al. Recent Progress on Solar Sail Membrane Materials and Deployment Technology[J]. Space Electronic Technology, 2015(3):18-26(in Chinese)
[19] 刘彪, 冀棉, 杨士勇. 太阳帆材料研究进展[J]. 宇航材料工艺, 2013, 43(4):24-28 LIU Biao, JI Mian, YANG Shiyong. Recent Progress on Solar Sail Materials[J]. Aerospace Materials & Technology, 2013, 43(4):24-28(in Chinese)