论文:2019,Vol:37,Issue(6):1102-1110
引用本文:
程云鹏, 闫晓东, 程锋. 基于气动性能分析的高超声速滑翔飞行器轨迹估计[J]. 西北工业大学学报
CHENG Yunpeng, YAN Xiaodong, CHENG Feng. Trajectory Estimation of Hypersonic Glide Vehicle Based on Analysis of Aerodynamic Performance[J]. Northwestern polytechnical university

基于气动性能分析的高超声速滑翔飞行器轨迹估计
程云鹏1,2, 闫晓东1,2, 程锋1,2
1. 西北工业大学 航天学院, 陕西 西安 710072;
2. 陕西省空天飞行器设计技术重点实验室, 陕西 西安 710072
摘要:
由于高超声速滑翔飞行器(HGVs)具有高速、高机动的特点,对此类目标的状态估计一直是一个研究热点。鉴于采用传统的运动学和动力学模型进行轨迹估计时加速度估计精度不高,提出一种基于气动性能分析的非线性气动参数目标估计模型。首先,在研究了高超声速滑翔飞行器跳跃再入段运动特性的基础上,以类HTV-2飞行器为研究目标,采用气动力估算方法对高超声速滑翔目标再入段的气动力进行计算分析。其次,建立与马赫数线性相关的气动参数"基准模型"和以一阶马尔可夫过程描述的气动参数"偏差模型",对目标气动参数进行非线性估计。数学仿真结果表明,该方法可以一定程度上提高卡尔曼滤波方法对该类目标的加速度估计精度。
关键词:    高超声速滑翔飞行器    机动目标估计    气动性能    气动参数模型   
Trajectory Estimation of Hypersonic Glide Vehicle Based on Analysis of Aerodynamic Performance
CHENG Yunpeng1,2, YAN Xiaodong1,2, CHENG Feng1,2
1. School of Astronautics, Northwestern Ploytechnical University, Xi'an 710072, China;
2. Shaanxi Key Laboratory of Aerospace Flight Vehicle Technology, Xi'an 710072, China
Abstract:
Due to high speed and high maneuverability of hypersonic glide vehicles (HGVs), the state estimation of such targets has always been a research hotspot. In order to improve accuracy of the trajectory estimation, a nonlinear aerodynamic parameter model for target estimation based on aerodynamic performance analysis is proposed. Firstly, the dynamic characteristics of the hypersonic glide vehicle during the hypersonic gliding stage was analyzed. Then, aiming at HTV-2-liked vehicle, the engineering calculation method was used to form the reference aerodynamic model for the target estimation. Secondly, a deviation model described by first-order Markov process was introduced to compensate the uncertainties of the unknown maneuver information from the target. Finally, extended Kalman filter was utilized to estimate the state of the target. The simulation results show that the proposed model is able to improve the accuracy of acceleration estimation for the HTV-2-liked hypersonic gliding vehicles.
Key words:    hypersonic gliding aircraft    maneuvering target estimation    aerodynamic performance    model for aerodynamic parameter   
收稿日期: 2018-11-15     修回日期:
DOI: 10.1051/jnwpu/20193761102
通讯作者:     Email:
作者简介: 程云鹏(1992-),西北工业大学博士研究生,主要从事机动目标跟踪和轨迹预报研究。
相关功能
PDF(1515KB) Free
打印本文
把本文推荐给朋友
作者相关文章
程云鹏  在本刊中的所有文章
闫晓东  在本刊中的所有文章
程锋  在本刊中的所有文章

参考文献:
[1] 关成启,宁国栋,王轶鹏, 等. 2016年国外高超声速打击武器发展综述[J]. 飞航导弹, 2017(3):3-6 GUAN Chengqi, NING Guodong, WANG Yipeng, et al. Review of Hypersonic Weapon Development Abroad in 2016[J]. Aerodynamic Missile Journal, 2017(3):3-6(in Chinese)
[2] 林旭斌,李彦,胡冬冬. 美军2019财年高超声速科研预算简析[J]. 飞航导弹, 2018(6):1-3 LIN Xubin, LI Yan, HU Dongdong. Analysis on the Budget of Hypersonic Scientific Research of the US Military in 2019[J]. Aerodynamic Missile Journal, 2018(6):1-3(in Chinese)
[3] 胡冬冬,刘晓明,张绍芳, 等. 2016年国外高超声速飞行器技术发展综述[J]. 战术导弹技术, 2017(1):28-33 HU Dongdong, LIU Xiaoming, ZHANG Shaofang, et al. Review of Hypersonic Technologies Progresses Abroad in 2016[J]. Tactical Missile Technology, 2017(1):28-33(in Chinese)
[4] 王璐, 韩洪涛, 王友利. 2017年国外高超声速技术发展回顾[J]. 国际太空, 2018(3):43-47 WANG Lu, HAN Hongtao, WANG Youli. Review of Foreign Hypersonic Technology in 2017[J]. Space International, 2018(3):43-47(in Chinese)
[5] HOUGH M E. Acceleration Characterization for Reentry Orbit Determination with Unmodeled Maneuvers[J]. Journal of Guidance Control & Dynamics, 2018(5):1-13
[6] 魏喜庆, 顾龙飞, 李瑞康, 等. 基于singer模型的高超声速飞行器轨迹跟踪与预测[J]. 航天控制, 2017(4):62-72 WEI Xiqing, GU Longfei, LI Ruikang,et al. Trajectory Tracking and Prediction of HypersonicVehicle Based on Singer Model[J]. Aerospace Control, 2017(4):62-72(in Chinese)
[7] OZKAYA B, ARCASOY C C. Analytical Solution of Discrete Colored Noise ECA Tracking Filter[J]. IEEE Trans on Aerospace and Electronic Systems, 1998, 34(1):93-102
[8] KLEIN I, BAR-SHALOM Y, RUSNAK I. Observability Analysis for Tracking of Coordinated Turn Maneuvers[C]//Proceedings of the 2014 IEEE 28th Convention of Electrical & Electronics Engineers in Israel, 2014
[9] MOOSE R. An Adaptive Estimator with Learning for a Plant Containing Semi-Markov Switching Parameters[J]. IEEE Trans on Systems, Man, and Cybernetics, 1973(3):277-281
[10] MAHAPATRA P R, MEHROTRA K. Mixed Coordinate Tracking of Generalized Maneuvering Targets Using Acceleration and Jerk Models[J]. IEEE Trans on Aerospace and Electronic Systems, 2000, 36(3):992-1000
[11] 王国宏, 李俊杰, 张翔宇, 等. 临近空间高超声速滑跃式机动目标的跟踪模型[J]. 航空学报, 2015(7):2400-2410 WANG Guohong, LI Junjie, ZHANG Xiangyu, et al.A Tracking Model for the Near Space Hypersonic Slippage Leap Maneuvering Target[J]. Acta Aeronautica et Astronautica Sinica, 2015(7):2400-2410(in Chinese)
[12] 曹亚杰, 李君龙, 秦雷. 临近空间非弹道式目标跟踪滤波算法研究[J]. 系统仿真学报, 2016(6):1351-1358 CAO Yajie, LI Junlong, QIN Lei. Study on Tracking Filter Algorithms for Nonballistic Targets in Near Space[J]. Journal of System Simulation, 2016(6):1351-1358(in Chinese)
[13] 秦雷, 周荻, 李君龙. 临近空间非弹道式目标跟踪修正变结构滤波[J]. 系统工程与电子技术, 2017, 39(7):1582-1589 QIN Lei, ZHOU Di, LI Junlong. Tracking Filter for Nonnallistic Near Space Targets Based on NVSIMM Algorithm[J]. Systems Engineering and Electronics, 2017, 39(7):1582-1589(in Chinese)
[14] HOUGH M E. Reentry Maneuver Estimation Using Nonlinear Markov Acceleration Models[J]. Journal of Guidance Control and Dynamics, 2017, 40(7):1693-1710
[15] 吴楠, 陈磊. 高超声速滑翔再入飞行器弹道估计的自适应卡尔曼滤波[J]. 航空学报, 2013, 8):1960-1971 WU Nan, CHEN Lei. Adaptive Kalman Filtering for Trajectory Estimation of Hypersonic Glide Reentry Vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2013(8):1960-1971(in Chinese)
[16] 张凯, 熊家军, 韩春耀, 等. 一种基于气动力模型的高超声速滑翔目标跟踪算法[J]. 宇航学报, 2017(2):123-130 ZHANG Kai, XIONG Jiajun, HAN Chunyao, et al. A Tracking Algorithm of Hypersonic Glide Reentry Vehicle via Aerodynamic Model[J]. Journal of Astronautics, 2017(2):123-130(in Chinese)
[17] LI X R, JILKOV V P. Survey of Maneuvering Target Tracking. PartⅡ:Motion Models of Ballistic and Space Targets[J]. IEEE Trans on Aerospace and Electronic Systems, 2010, 46(1):96-119
[18] FAN Y, ZHU W, BAI G. A Cost-Effective Tracking Algorithm for Hypersonic Glide Vehicle Maneuver Based on Modified Aerodynamic Model[J]. Applied Sciences, 2016, 6(10):312
[19] 夏陈超, 赵文文, 陈伟芳, 等. 类HTV-2升力体参数化建模与网格自动生成研究[C]//全国激波与激波管学术会议, 2012 XIA Chenchao, ZHAO Wenwen, CHEN Weifang, et al. Research on Parameterized Modeling and Automatic Mesh Generation of HTV-2-Like Lifting Body[C]//Chinese National Symposium on Shock Waves, 2012(in Chinese)
[20] 程锋, 唐硕, 张栋. 超声速/高超声速飞行器气动力快速估算平台设计及应用[J]. 西北工业大学学报, 2018, 36(6):1076-1084 CHENG Feng, Tang Shuo, ZHANG Dong. Design and Applications of Preliminary Evaluation Platform of Aerodynamic Forces for Supersonic/Hypersonic Vehicles[J]. Journal of Northwestern Polytechnical University, 2018, 36(6):1076-1084(in Chinese)
[21] WALKER S, SHERK J, SHELL D, et al. The DARPA/AF Falcon Program:The Hypersonic Technology Vehicle #2(HTV-2) Flight Demonstration Phase[C]//AIAA International Space Planes and Hypersonic Systems and Technologies Conference, 2008
[22] VINH N X. Optimal Trajectories in Atmospheric Flight a2-Napolitano, l.G[M]. Oxford, Pergamon Press, 1982:449-468
[23] 赵汉元. 飞行器再入动力学与制导[M]. 长沙:国防科技大学出版社, 1997 ZHAO Hanyuan. Reentry Dynamics and Guidance of Aircraft[M]. Changsha, University of National Defense Science and Technology Press, 1997(in Chinese)
[24] 朱辉玉, 王刚, 孙泉华, 等. 典型气动布局高超声速飞行的气动力数值评估[J]. 空气动力学学报, 2012, 30(3):365-372 ZHU Huiyu, WANG Gang, SUN Quanhua, et al. Numerical Evaluation on Areodynamics of Typical Hypersonic Configurations for Hypersonic Flight[J]. Acta Aerodynamica Sinica, 2012, 30(3):365-372(in Chinese)
[25] 战培国. 美国陆军先进高超声速武器气动问题分析[J]. 航空科学技术, 2015(1):7-11 ZHAN Peiguo. Aerodynamic Analysis of US Army Advanced Hypersonic Weapon[J]. Aeronautical Science & Technology, 2015(1):7-11(in Chinese)
[26] SINGER R A. Estimating Optimal Tracking Filter Performance for Manned Maneuvering Targets[J]. IEEE Trans on Aerospace and Electronic Systems, 1970, 6(4):473-483