论文:2019,Vol:37,Issue(3):572-579
引用本文:
贾洪印, 周桂宇, 唐静, 吴晓军, 马明生. 带鼓包的背负式大S弯进气道流场特性及参数影响规律[J]. 西北工业大学学报
JIA Hongyin, ZHOU Guiyu, TANG Jing, WU Xiaojun, MA Mingsheng. Numerical Investigation of Dorsal S-Shaped Inlet Flow Characteristic and Effects of Related Parameters[J]. Northwestern polytechnical university

带鼓包的背负式大S弯进气道流场特性及参数影响规律
贾洪印, 周桂宇, 唐静, 吴晓军, 马明生
中国空气动力研究与发展中心 计算空气动力研究所, 四川 绵阳 621000
摘要:
背负式进气口结合大S弯内管道的进气系统设计方案,由于其良好的隐身特性,在各类作战飞机上得到了广泛应用。利用自主开发的大规模并行流场解算器,对某带鼓包的背负式大S弯进气道流场特性及参数影响规律进行了一体化数值模拟研究。首先介绍了采用的数值模拟方法,通过大S弯进气道模型,验证了程序对进气道内分离流动预测的可靠性;在此基础上,对带鼓包背负式大S弯进气道在超声速来流情况下入口激波分布、进气道内部流动情况以及出口流场的气流品质进行了分析,对比分析了不同鼓包高度和唇缘后掠角对进气道性能的影响,结果显示:进气道内独特的S弯设计,会导致流动分离和二次流,造成总压损失;不同外部几何参数对进气道性能影响很大,在一定范围内,适当降低鼓包高度或减小唇缘后掠角,有利于进气道性能改善。
关键词:    背负式    大S弯进气道    鼓包    总压恢复    二次流    参数影响   
Numerical Investigation of Dorsal S-Shaped Inlet Flow Characteristic and Effects of Related Parameters
JIA Hongyin, ZHOU Guiyu, TANG Jing, WU Xiaojun, MA Mingsheng
Computational Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China
Abstract:
The air intake design system of the dorsal intake combined with the S-shaped inlet has been widely used in various combat aircraft due to its good stealth characteristics. In this paper, the numerical simulation of the flow characteristic and influence law of various parameters for a typical air intake design with dorsal S-shaped inlet was carried out using the in-house large-scale parallel computational fluid dynamics (CFD) solver. Firstly, the numerical method was introduced and the solver was preliminarily validated by the well-known RAE M2192 inlet model. Then, the numerical calculation of the target air intake design was conducted and the distribution of shockwave at the entrance area, the second flow in the inlet and the flow at the exit section plane were analyzed in proper order. In addition, the influence of the bump height and lip sweep angles on the inlet performance was also studied. The simulation results show that the unique S-shaped design in the inlet will result in flow separation and secondary flow, ultimately causing total pressure loss, and different external geometry parameters have a great influence on the inlet performance. Within a certain range, proper reduction of the bump height or lip sweep angle can improve the inlet performance.
Key words:    dorsal air intake    S-shaped inlet    bump    total pressure recovery    second flow    related parameters    simulation    shockwave    CFD   
收稿日期: 2018-05-21     修回日期:
DOI: 10.1051/jnwpu/20193730572
通讯作者:     Email:
作者简介: 贾洪印(1985-),中国空气动力研究与发展中心助理研究员,主要从事飞行器内外流一体化模拟分析研究。
相关功能
PDF(2390KB) Free
打印本文
把本文推荐给朋友
作者相关文章
贾洪印  在本刊中的所有文章
周桂宇  在本刊中的所有文章
唐静  在本刊中的所有文章
吴晓军  在本刊中的所有文章
马明生  在本刊中的所有文章

参考文献:
[1] GRIDLEY M C, WALKER S H. Inlet and Nozzle Technology for 21st Century Fighter Aircraft[R]. ASME-1996-GT-244
[2] 石磊,郭荣伟. 蛇形进气道的电磁散射特性[J]. 航空学报, 2007, 28(6):1296-1310 SHI Lei, GUO Rongwei. Electromagnetic Scattering Characteristics of Serpentine Inlet[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(6):1296-1310(in Chinese)
[3] 张乐,周洲,许晓平,等. 飞翼无人机保形进排气系统动力数值模拟与流场特性分析[J]. 西北工业大学学报, 2015, 33(3):353-360 ZHANG Le, ZHOU Zhou, XU Xiaoping, et al. Numerical Simulation of Power and Flow Field Characteristics of Conformal Intake and Exhaust for Flying Wing Unmanned Aerial Vehicle[J]. Journal of Northwestern Polytechnical University, 2015, 33(3):353-360(in Chinese)
[4] 郁新华,刘斌,陶于金,等. 背负式进气道设计及其气动性能研究[J]. 西北工业大学学报, 2007, 25(2):270-273 YU Xinhua, LIU Bin, TAO Yujin, et al. Top-Mounted Inlet Design and Its Aerodynamic Performance[J]. Journal of Northwestern Polytechnical University, 2007, 25(2):270-273(in Chinese)
[5] 陈颖秀,侯安平,张章,等. 前机身/进气道攻角特性的数值与试验研究[J]. 推进技术, 2014,35(6):727-734 CHEN Yingxiu, HOU Anping, Zhang Zhang, et al. Numerical and Experimental Studies on Characteristics under Angle of Attack for Forebody-Inlet[J]. Journal of Propulsion Technology, 2014, 35(6):727-734(in Chinese)
[6] WILLIAMS T L, HUNT B L, SMELTZER D B, et al. Top-Mounted Inlet System Feeaibility for Transonic-Supersonic Fighter Aircraft Applications[R]. AGARD-CP-301
[7] RICHARD K S. An Overview of Military Aircraft Supersonic Inlet Aerodynamic[R]. AIAA-2012-0013
[8] HAMSTRA J W, SYLVESTER G T. System and Method for Diverting Boundaty Layer Air[P]. US, 5779189, 1998-07-14
[9] KIM S D. Aerodynamic Design of a Supersonic Inlet with a Parametric Bump[J]. Journal of Aircraft, 2009, 46(1):198-202
[10] TAN H J, GUO R W. Design and Wind Tunnel Study of a Top-Mounted Diverterless Inlet[J]. Chinese Journal of Aeronautics, 2004, 17(2):72-78
[11] 张航,谭慧俊,李湘萍,等. 类X-47狭缝式进气道的流动特征与工作性能[J]. 航空学报, 2009, 30(12):2243-2249 ZHANG Hang, TAN Huijun, LI Xiangping, et al. Flow Structure and Performance Characteristiscs of X-47-Like Slot-Shaped Inlet[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(12):2243-2249(in Chinese)
[12] 李大伟,张云飞,马东立. 背负式S形进气道设计及数值分析[J]. 推进技术, 2006, 27(1):61-65 LI Dawei, ZHANG Yunfei, MA Dongli. Design and Numerical Investigation of Dorsal S-Shape Inet[J]. Journal of Propulsion Technology, 2006, 27(1):61-65(in Chinese)
[13] NEAL D D, DAN B. Inlet CFD Results:Comparison of Solver, Turbulence Model, Grid Density and Topology[R]. AIAA-2013-3793
[14] CHAD M W, ZACH S D. Summary of the 3rd Propulsion Aerodynamics Workshop:S-duct Result[R]. AIAA-2017-4912
[15] MICHELLE L M, SCOTT A M, GISSEN A, et al. Inlet Flow Control and Prediction Technologies for Embedded Propulsion Systems[R]. NASA/CR-2011-217237
[16] 梁德旺,李博. 无隔道进气道反设计及附面层排除机理分析[J]. 航空学报, 2005, 26(3):286-289 LIANG Dewang, LI Bo. Reverse Design of Diverterless Inlet and Mechanism of Diversion of Boundary Layer[J]. Acta Aeronautica et Astronautica Sinica, 2005, 26(3):286-289(in Chinese)
[17] 宁乐,谭慧俊,孙姝. 有无边界层吸入对S弯进气道流动特性的影响[J]. 推进技术,2017,38(2):266-274 NING Le, TAN Huijun, SUN Shu. Effects of Boundary Layer Ingestion on Flow Characteristics of an S-Shaped Inlet[J]. Journal of Propulsion Technology, 2017, 38(2):266-274(in Chinese)
[18] CHEN J T, ZHANG Y B, ZHOU N C, et al. Numerical Investigations of the High-Lift Configuration with M Flow Solver[J]. Journal of Aircraft, 2015, 52(4):1051-1062
[19] GONG X Q, CHEN J T, ZHOU N C, et al. The Effects of Turbulence Model Correction on Drag Prediction of NASA Common Research Model[R]. AIAA-2014-3171
[20] LIU K W, ROSENDALE J V, VEEMEER W. 3D Shock Wave Visualization on Unstructured Grids[C]//1996 IEEE Symposium on Volume Visualization, San Francisco, California, 1996
[21] MOIGNE Y L. Adaptive Mesh Refinement Sensors for Vortex Flow Simulations[C]//Proceedings of the European Congress on Computational Methods in Applied Sciences and Engineering, 2004
[22] SPALART P R, ALLMARAS R. A One-Equation Turbulence Model for Aerodynamic Flows[R]. AIAA-1992-0439
[23] FLRIAN R Menter. Improved Two-Equation k-ω Turbulence Model for Aerodynamic Flow[R]. NASA TM103975
[24] STANLEY R. WIND-US Flow Calculations for the M2129 S-Duct Using Structured and Unstructured Grids[R]. AIAA-2004-0525