论文:2019,Vol:37,Issue(2):344-353
引用本文:
李晓鹏, 康顺, 王天明, 赵养正. 基于突起物流动控制的超声速弹箭气动布局研究[J]. 西北工业大学学报
LI Xiaopeng, KANG Shun, WANG Tianming, ZHAO Yangzheng. Aerodynamic Layout Designs Using of Microflaps for Flow Control of a Supersonic Finned Projectile[J]. Northwestern polytechnical university

基于突起物流动控制的超声速弹箭气动布局研究
李晓鹏1, 康顺2, 王天明1, 赵养正1
1. 中国兵器工业第203研究所, 陕西 西安 710065;
2. 西安工业大学, 陕西 西安 710021
摘要:
流动控制方案是在弹身尾部弹翼之间排布一定数量的微型突起物,突起物的干扰造成了弹翼上压力分布的变化,从而改变作用于弹箭上的气动力和力矩,实现弹箭飞行姿态的改变,针对弹箭尺寸小和飞行速度高的特点,极有可能成为超声速飞行弹箭的一种快速有效控制手段。采用数值求解三维定常雷诺平均Navier-Stokes方程和k-ε两方程湍流模型的CFD方法,首先分析了超声速状态下孤立突起物的绕流场结构,细致揭示了孤立突起物产生的激波/激波干扰、激波/边界层干扰等流场结构;其次针对孤立突起物与单个弹翼的组合体构型,揭示出突起物对弹翼的干扰流场结构,分析了突起物的形状与安装位置对弹翼绕流场及气动力的影响规律;最后针对Basic-Finner弹箭模型,研究了多个突起物组合的俯仰与滚转方向控制的气动布局方案。研究结果表明:在超声速状态下,突起物对弹翼的干扰主要来源于3个方面:突起物前面形成的分离流动所产生的分离激波干扰区,绕突起物产生的三维弓形激波干扰区,以及突起物尾迹干扰区。其中,三维弓形激波干扰区域最大,干扰强度大。最后给出了基于突起物控制的俯仰与滚转方向气动布局方案,在Ma=2.5的状态下,比较了不同数量突起物方案的气动特性。单个突起物的存在,使得全弹的阻力增加约4.8%,随着突起物数量的增加,产生的控制力矩基本线性增加。通过合理布置微型突起物的安装位置,可以使得弹箭尾部弹翼上压力快速改变,突起物安装要尽量增大弹翼上的高压区,与此同时尽量减小低压区的干扰,从而实现超声速飞行弹箭姿态的快速控制。
关键词:    微型突起物    超声速流动    流动控制机理    气动布局设计    计算流体力学(CFD)   
Aerodynamic Layout Designs Using of Microflaps for Flow Control of a Supersonic Finned Projectile
LI Xiaopeng1, KANG Shun2, WANG Tianming1, ZHAO Yangzheng1
1. No. 203 Research Institute of China Ordnance Industries, Xi'an 710065, China;
2. Xi'an Technological University, Xi'an 710021, China
Abstract:
In this paper, the flow control system consists of some small microflaps located between the rear fins of the projectile. These microflaps can alter the flow field in the finned region of the projectile resulting in asymmetric pressure distribution and thus producing control forces and moments, furthermore to provide directional control for a supersonic projectile. Due to the small size and high speed characteristics of projectile, which is with fast and valid response characteristics, this flow control system has initially shown excellent potential in terms of supersonic flow control. The CFD simulation used here solves steady-state Reynolds-averaged Navier-Stokes equation with two-equation turbulence model k-ε. Firstly, we investigate the flow mechanism around microflap in supersonic flow, the flow fields around the microflap are complex, involving three-dimensional shock-shock,shock-boundary layer interactions. Secondly, for the microflap and the fin of Basic Finner configuration, the influence of microflap geometric parameters, microflap locations on aerodynamics is obtained and the interference mechanism is explored. Finally, several typical roll and pitch control layouts are described. According to the simulation results and their analysis, some preliminary conclusions can be drawn: by analyzing the flow interference mechanism between microflap and the fin, we find that the separated shocks ahead of the microflap, the bow shocks around microflap, and the trailing-edge wake, have influences on fin's surface pressure; among these factors, the bow shocks are stronger than separated shocks, furthermore it can generate larger high pressure region. Then we find out the aerodynamic characteristics of several typical control layouts at a supersonic speed, Ma=2.5, furthermore, hence nearly 4.8% drag is increase compared with the condition without microflap. As the number of microflaps increasing, the control aerodynamic forces and moments increases almost linearly. With a proper layout of the microflap's location, quick change in the surface pressure distribution can be achieved for rear fins of the projectile, the microflap should be mounted that can increase the high pressure zone, meanwhile, reduce the low pressure zone on the surface of fins, thus modulating the projectile's attitude can be realized.
Key words:    microflaps    supersonic flow    flow control mechanism    aerodynamic layouts design    computational fluid dynamics    aerodynamic configurations    Mach number    mesh generation    flow fields    aerodynamic drag   
收稿日期: 2018-06-30     修回日期:
DOI: 10.1051/jnwpu/20193720344
通讯作者:     Email:
作者简介: 李晓鹏(1982-),中国兵器工业第203研究所高级工程师,主要从事弹箭气动布局设计与计算流体力学研究。
相关功能
PDF(3440KB) Free
打印本文
把本文推荐给朋友
作者相关文章
李晓鹏  在本刊中的所有文章
康顺  在本刊中的所有文章
王天明  在本刊中的所有文章
赵养正  在本刊中的所有文章

参考文献:
[1] 徐明亮,刘鲁华,汤国建,等. 直接力/气动力复合作用动能拦截弹姿态控制方法[J]. 国防科技大学学报, 2010, 32(4):30-36 XU Mingliang, LIU Luhua, TANG Guojian, et al. Research on Attitude Control of Kinetic Energy Interceptor under Blended Operation of Lateral Thrust and Aerodynamic Force[J]. Journal of National University of Defense Technology, 2010, 32(4):30-36(in Chinese)
[2] 马克茂,赵辉,张德成. 导弹直接侧向力与气动力复合控制设计与实现[J]. 宇航学报, 2011,32(2):310-316 MA Kemao, ZHAO Hui, ZHANG Decheng. Control Design and Implementation for Missiles with Blended Lateral Jets and Aerodynamic Control Systems[J]. Journal of Astronautics, 2011, 32(2):310-316(in Chinese)
[3] 陶增元,李军,程邦勤. 飞机推进系统关键技术-推力矢量技术[J]. 空军工程大学学报, 2000,1(2):86-90 TAO Zengyuan, LI Jun, CHENG Bangqin. Thrust Vector Technique, the Vital Technology of Aircraft Propulsion System[J]. Journal of Air Force Engineering University, 2000, 1(2):86-90(in Chinese)
[4] 蔡晋生,刘秋洪. 超声速流场中侧向射流的数值研究[J]. 空气动力学学报, 2010,28(5):553-558 CAI Jinsheng, LIU Qiuhong. Numerical Investigation of Lateral Jets in Supersonic Cross-Flows[J]. Acta Aerodynamica Sinica, 2010, 28(5):553-558(in Chinese)
[5] TORSTENS S, CARLOS E S. Canard-Evevon Interactions on a Hypersonic Vehicle[J]. Journal of Spacecraft and Rockets, 2010,47(1):90-100
[6] ROGERS J, COSTELLO M. Design of a Roll-Stabilized Mortar Projectile with Reciprocating Canards[J]. Journal of Guidance, Control,and Dynamics, 2010, 33(4):1026-1034
[7] MASSEY K, MCMICHAEL J, WARNOCK T, et al. Mechanical Actuators for Guidance of a Supersonic Projectile[J]. Journal of Spacecraft and Rockets, 2008, 45(4):802-812
[8] DYKES J, COSTELLO M, CLER D L, et al. Use of Micro Spoilers for Control of Finned Projectiles[C]//Proceedings of the AIAA Atmospheric Flight Mechanicsconference, Toronto, Canada, 2010
[9] DYKES J, MONTALVO C, COSTELLO M, et al. Use of Microspoilers for Control of Finned Projectiles[J]. Journal of Spacecraft and Rockets, 2012, 49(6):1131-1140
[10] SCHEUERMANN E, COSTELLO M, SILTON S, et al. Aerodynamic Characterization of a MicrospoilerSystemfor Supersonic Finned Projectiles[J]. Journal of Spacecraft and Rockets, 2015, 52(1):253-263
[11] SAHU J, HEAVAY K R. Parallel CFD Computations of Projectile Aerodynamics with a Flow Control Mechanism[J]. Computers & Fluids, 2013,88:678-687
[12] SEDNEY R, KITCHENS C W. Separation Ahead of Protuberances in Supersonic Turbulent Boundary Layers[J]. AIAA Journal, 1976, 15:546-552
[13] DUPUIS A. Aeroballistic Range and Wind Tunnel Tests of the Basic Finner Reference Projectile from Subsonic to High Supersonic Velocities[R]. TM-2002-136
[14] 王登攀. 超声速壁面涡流发生器流场精细结构与动力学特性研究[D]. 长沙:国防科学技术大学WANG Dengpan. The Flow Structures and Dynamic Behavior of Supersonic Flow over Vortex Generators on the Wall[D]. Chang Sha, National University of Defense Technology (in Chinese)