论文:2018,Vol:36,Issue(6):1168-1175
引用本文:
李东海, 赵寿根, 何玉金, 李涛. 含有时滞控制的准零刚度隔振器的隔振性能研究[J]. 西北工业大学学报
Li Donghai, Zhao Shougen, He Yujin, Li Tao. Study on the Performance of a Quasi-Zero-Stiffness Isolator with Time Delay Control[J]. Northwestern polytechnical university

含有时滞控制的准零刚度隔振器的隔振性能研究
李东海, 赵寿根, 何玉金, 李涛
北京航空航天大学 航空科学与工程学院, 北京 100191
摘要:
采用一对斜置弹簧作为负刚度元件,与垂直弹簧并联组成准零刚度非线性隔振器,从而增大系统的隔振频率范围。并引入线性位移时滞控制。通过平均法分析得到系统在简谐力激励下的响应特性。在此基础上,研究了该刚度系统在引入线性位移时滞控制时的力传递特性,给出了时滞控制对力传递率的影响规律和特点。结果表明,无论受控系统是在低频段还是高频段,该隔振器的隔振性能均比等效的线性隔振器要好,而受控系统的隔振性能优于不受控系统。
关键词:    准零刚度    隔振器    时滞控制    力传递率   
Study on the Performance of a Quasi-Zero-Stiffness Isolator with Time Delay Control
Li Donghai, Zhao Shougen, He Yujin, Li Tao
School of Aeronautical Science and Engineering, Beihang University, Beijing 100191, China
Abstract:
A quasi-zero-stiffness vibration isolation consists of a pair of oblique springs and a vertical spring, aiming at widening the vibration isolation region, is studied in this paper. The time delay linear displacement feedback control strategy is introduced to improve the performance of the isolator. The characteristics of dynamical response under harmonically forcing excitation is obtained by using averaging method. The force transmissibility of the control isolator is presented in this paper. The influence of the time delay linear displacement control on the force transmissibility is studied theoretically. The results show that the performance of the vibration isolation with time-delay control is better than the equivalent linear isolator in either low or high frequency region and the performance of controlled system is better than uncontrolled system.
Key words:    quasi-zero stiffness    vibration isolator    time delay control    force transmissibility   
收稿日期: 2017-09-15     修回日期:
DOI:
基金项目: 国家自然科学基金(11432002)资助
通讯作者:     Email:
作者简介: 李东海(1992-),北京航空航天大学硕士研究生,主要从事结构动力学分析与控制研究。
相关功能
PDF(1693KB) Free
打印本文
把本文推荐给朋友
作者相关文章
李东海  在本刊中的所有文章
赵寿根  在本刊中的所有文章
何玉金  在本刊中的所有文章
李涛  在本刊中的所有文章

参考文献:
[1] Carrella A, Brennan M J, Waters T P, et al. Force and Displacement Transmissibility of a Nonlinear Isolator with High-Static-Low-Dynamic-Stiffness[J]. International Journal of Mechanical Sciences, 2012, 55(1):22-29
[2] Ibrahim R A. Recent Advances in Nonlinear Passive Vibration Isolators[J]. Journal of Sound & Vibration, 2008, 314(3/4/5):371-452
[3] Liu C, Jing X, Daley S, et al. Recent Advances in Micro-Vibration Isolation[J]. Mechanical Systems & Signal Processing, 2015, 56/57(suppl 1):55-80
[4] Yang J, Xiong Y P, Xing J T. Dynamics and Power Flow Behaviour of a Nonlinear Vibration Isolation System with a Negative Stiffness Mechanism[J]. Journal of Sound & Vibration, 2012,332(1):167-183
[5] Shaw A D, Neild S A, Wagg D J. Dynamic Analysis of High Static Low Dynamic Stiffness Vibration Isolation Mounts[J]. Journal of Sound & Vibration, 2013,332(6):1437-1455
[6] 彭献, 黎大志, 陈树年. 准零刚度隔振器及其弹性特性设计[J]. 振动、测试与诊断, 1997(4):44-46 Peng Xian, Li Dazhi, Chen Shunian. Quasi-Zero-Stiffness Vibration Isolators and Design for Their Elastic Characteristics[J]. Journal of Vibration Measurement and Diagnosis, 1997(4):44-46(in Chinese)
[7] Zhang J Z, Shen D, Dan Li. Study on New Type Vibration Isolation System Based on Combined Positive and Negative Stiffness[J]. Nanoteohnology & Precision Engineering, 2004, 2(4):314-318
[8] 徐道临, 成传望, 周加喜. 屈曲板型准零刚度隔振器的设计和特性分析[J]. 湖南大学学报(自科版), 2014,41(8):17-22 Xu Daolin, Cheng Chuanwang, Zhou Jiaxi. Design and Characteristic Analysis of a Buckling Plate Vibration Isolator with Quasi-Zero-Stiffness[J]. Journal of Hunan University(Natural Sciences), 2014,41(8):17-22(in Chinese)
[9] 徐道临, 赵智, 周加喜. 气动可调式准零刚度隔振器设计及特性分析[J]. 湖南大学学报(自科版), 2013,40(6):47-52 Xu Daolin, Zhao Zhi, Zhou Jiaxi. Design and Analysis of an Adjustable Pneumatic Vibration Isolator with Quasi-Zero-Stiffness Characteristic[J]. Journal of Hunan University(Natural Sciences), 2013, 40(6):47-52(in Chinese)
[10] 刘兴天, 黄修长, 张志谊, 等. 激励幅值及载荷对准零刚度隔振器特性的影响[J]. 机械工程学报, 2013,49(6):89-94 Liu Xingtian, Huang Xiuchang, Zhang Zhiyi, et al. Influence of Excitation Amplitude and Load on the Characteristics of Quasi-Zero Stiffness Isolator[J]. Journal of Mechanical Engineering, 2013,49(6):89-94(in Chinese)
[11] Carrella A, Brennan M J, Kovacic I, et al. On the Force Transmissibility of a Vibration Isolator with Quasi-Zero-Stiffness[J]. Journal of Sound and Vibration, 2009,322(4/5):707-717
[12] Carrella A, Brennan M J, Waters T P. Optimization of a Quasi-Zero-Stiffness Isolator[J]. Journal of Mechanical Science and Technology, 2007,21(6):946-949
[13] Carrella A. Passive Vibration Isolators with High-Static-Low-Dynamic-Stiffness[D]. Southampton, University of Southampton, 2008
[14] Carrella A, Brennan M J, Waters T P. Static Analysis of a Passive Vibration Isolator with Quasi-Zero-Stiffness Characteristic[J]. Journal of Sound & Vibration, 2007,301(3/4/5):678-689
[15] 王勇, 李舜酩, 程春, 等. 立方速度反馈控制的准零刚度隔振器动力学特性分析[J]. 振动工程学报, 2016,29(2):305-313 Wang Yong, Li Shunming, Cheng Chun, et al. Dynamic Analysis of a Quasi-Zero-Stiffness Vibration Isolator with Cubic Velocity Feedback Control[J]. Journal of Vibration Engineering, 2016,29(2):305-313(in Chinese)
[16] 张月英. 准零刚度隔振器的特性分析及实验研究[D]. 长沙:湖南大学, 2013 Zhang Yueying. On Analytical and Experimental Assessment of a Quasi-Zero-Stiffness Isolator[D]. Changsha, Hunan University, 2013(in Chinese)
[17] Xu D, Yu Q, Zhou J, et al. Theoretical and Experimental Analyses of a Nonlinear Magnetic Vibration Isolator with Quasi-Zero-Stiffness Characteristic[J]. Journal of Sound & Vibration, 2013, 332(14):3377-3389
[18] 闫健. 准零刚度隔振器特性研究与星上隔振应用[D]. 哈尔滨:哈尔滨工业大学, 2016 Yan Jian. Characterization Analysis of Quasi-Zero-Stiffness Isolator and Application on Satellite Vibration Suppression[D]. Harbin, Harbin Institute of Technology, 2016(in Chinese)
[19] 杜宁, 胡明勇, 毕勇, 等. 一种车载设备的低频水平减振方法[J]. 振动与冲击, 2017,36(7):184-190 Du Ning, Hu Mingyong, Bi Yong, et al. A Low Frequency Horizontal Vibration Reduction Method for a Vehicle-Borne Photoelectric Instrument[J]. Journal of Vibration and Shock, 2017, 36(7):184-190(in Chinese)
[20] Ishida S, Uchida H, Shimosaka H, et al. Design and Numerical Analysis of Vibration Isolators with Quasi-Zero-Stiffness Characteristics Using Bistable Foldable Structures[J]. Journal of Vibration & Acoustics, 2017,139(3):031015-1-031015-8
[21] Cao Q, Wiercigroch M, Pavlovskaia E E, et al. The Limit Case Response of the Archetypal Oscillator for Smooth and Discontinuous Dynamics[J]. International Journal of Non-Linear Mechanics, 2008, 43(6):462-473
[22] Brennan M J, Kovacic I, Carrella A, et al. On the Jump-up and Jump-down Frequencies of the Duffing Oscillator[J]. Journal of Sound & Vibration, 2008,318(4):1250-1261
[23] Cao Q, Wiercigroch M, Pavlovskaia E E, et al. Archetypal Oscillator for Smooth and Discontinuous Dynamics[J]. Physical Review E, 2006, 74(2):159-163
[24] Kovacic I, Brennan M J, Lineton B. On the Resonance Response of an Asymmetric Duffing Oscillator[J]. International Journal of Non-Linear Mechanics, 2008, 43(9):858-867
[25] Nbendjo B R N, Salissou Y, Woafo P. Active Control with Delay of Catastrophic Motion and Horseshoes Chaos in a Single Well Duffing Oscillator[J]. Chaos Solitons & Fractals, 2005,23(3):809-816
[26] Nbendjo B R N, Tchoukuegno R, Woafo P. Active Control with Delay of Vibration and Chaos in a Double-Well Duffing Oscillator[J]. Chaos Solitons & Fractals, 2003,18(2):345-353
[27] Zhao Y Y, Xu J. Effects of Delayed Feedback Control on Nonlinear Vibration Absorber System[J]. Journal of Sound & Vibration, 2007,308(1):212-230
[28] Huang S J, Huang K S, Chiou K C. Development and Application of a Novel Radial Basis Function Sliding Mode Controller[J]. Mechatronics, 2003,13(4):313-329
[29] 李东海, 赵寿根, 何玉金, 等. 含有线性位移时滞控制的准零刚度隔振器在简谐力激励下的动力学特性分析[J]. 振动与冲击, 2018(13):49-55 Li Donghai, Zhao Shougen, He Yujing, et al. Dynamic Analysis of a Quasi-Zero-Stiffness Vibration Isolator with Time-Delayed Control under Harmonically Forcing Excitation[J]. Journal of Vibration and Shock, 2018(13):49-55(in Chinese)
[30] 葛东明, 邹元杰, 张志娟, 等. 基于全柔性卫星模型的控制闭环微振动建模与仿真[J]. 航天器工程, 2012,5(21):58-63 Ge Dongming, Zou Yuanjie, Zhang Zhijuan, et al. Control Closed-Loop Micro-Vibration Modeling and Simulation Based on Flexible Satellite Model[J]. Spacecraft Engineering, 2012,5(21):58-63(in Chinese)