论文:2018,Vol:36,Issue(6):1162-1167
引用本文:
孔斌, 杨家勇, 王曼, 张庆茂, 黄杰, 姚卫星. 应变隔离垫高温力学性能试验及应力分布规律[J]. 西北工业大学学报
Kong Bin, Yang Jiayong, Wang Man, Zhang Qingmao, Huang Jie, Yao Weixing. Experiments on High Temperature Mechanical Properties and Stress Distribution Laws on Strain Isolation Pad[J]. Northwestern polytechnical university

应变隔离垫高温力学性能试验及应力分布规律
孔斌1,2, 杨家勇2, 王曼2, 张庆茂2, 黄杰1, 姚卫星1,3
1. 南京航空航天大学 飞行器先进设计技术国防重点学科实验室, 江苏 南京 210016;
2. 中国航空工业集团公司 成都飞机设计研究所, 四川 成都 610091;
3. 南京航空航天大学 机械结构力学及控制国家重点实验室, 江苏 南京 210016
摘要:
防热瓦作为热防护系统(TPS)的主要隔热部件,其通过应变隔离垫(SIP)粘接于机体表面。为了进行SIP的高温力学性能及应力分布规律研究,在常温(23±2℃)和300℃高温2种试验环境下进行了SIP的拉伸、压缩和剪切试验,获得了试验件的载荷-位移曲线、弹性模量及破坏应变。相比常温下,在300℃高温下SIP的拉伸、压缩和剪切弹性模量分别下降了9.68%,9.24%和8.73%,此外在300℃高温下SIP的拉伸和剪切破坏应变分别下降了11.59%和12.81%,即高温引起了SIP刚度和强度的下降。利用试验数据进行了SIP的应力分布规律研究,结果表明在拉、压及剪切力作用下,SIP应力呈中间低边缘高的趋势。此外在剪切力作用下,SIP同时产生剪切应力和正应力,并且正应力一端受拉,另一端受压。由以上分析可知SIP的边缘处是高应力区域,易发生破坏,应给予足够的重视。
关键词:    热防护系统    应变隔离垫    高温力学性能    应力分布   
Experiments on High Temperature Mechanical Properties and Stress Distribution Laws on Strain Isolation Pad
Kong Bin1,2, Yang Jiayong2, Wang Man2, Zhang Qingmao2, Huang Jie1, Yao Weixing1,3
1. Key Laboratory of Fundamental Science for National Defense-Advanced Design Technology of Flight Vehicle, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
2. AVIC Chengdu Aircraft Design and Research Institute, Chengdu 610091, China;
3. State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Abstract:
The tile is the main heat insulation part of a thermal protection system, and is attached to the outer surface of an orbiter through a strain isolation pad (SIP). In order to study its high temperature mechanical properties and stress distribution, experiments on flatwise tension, flatwise compression and flatwise shear are conducted in the environments of the room temperature of 23±2℃ and the 300℃ high temperature. The load-displacement curve, elasticity modulus and failure strain of the SIP are measured and calculated. Compared with the experimental results under the room temperature, the tension, compression and shear elasticity modulus of the SIP in the 300℃ high temperature environment fall by 9.68%, 9.24% and 8.73% respectively, and the tension and shear failure strain of the SIP in the 300℃ high temperature environment fall by 11.59% and 12.81% respectively. So, the high temperature causes the decrease of the stiffness and strength of the SIP. Its stress distribution is studied with the experimental results. Under the influence of tension, compression and shear force, the stress distribution of the SIP shows trends of low middle and high edge. Besides, shear stress and normal stress are produced under shear force, and the normal stress is tensile at one side and compressed at the other side. The above analysis shows that the edge of the SIP is high in stress and easy to damage.
Key words:    thermal protection system    strain isolation pad    high temperature mechanical properties    stress distribution   
收稿日期: 2018-03-02     修回日期:
DOI:
通讯作者:     Email:
作者简介: 孔斌(1986-),南京航空航天大学工程师、博士生,主要从事复合材料结构设计与分析和热防护系统设计研究。
相关功能
PDF(1720KB) Free
打印本文
把本文推荐给朋友
作者相关文章
孔斌  在本刊中的所有文章
杨家勇  在本刊中的所有文章
王曼  在本刊中的所有文章
张庆茂  在本刊中的所有文章
黄杰  在本刊中的所有文章
姚卫星  在本刊中的所有文章

参考文献:
[1] Knight D, Chazot O, Austin J, et al. Assessment of Predictive Capabilities for Aerodynamic Heating in Hypersonic Flow[J]. Progress in Aerospace Sciences, 2017, 90:39-53
[2] Li J, Chen H, Zhang S, et al. On the Response of Coaxial Surface Thermocouples for Transient Aerodynamic Heating Measurements[J]. Experimental Thermal and Fluid Science, 2017, 86:141-148
[3] Vasil'evskii S A, Gordeev A N, Kolesnikov A F. Local Modeling of the Aerodynamic Heating of the Blunt Body Surface in Subsonic High-Enthalpy Air Flow. Theory and Experiment on a High-Frequency Plasmatron[J]. Fluid Dynamics, 2017, 52(1):158-164
[4] Huang J, Li P, Yao W X. Thermal Protection System Gap Analysis Using a Loosely Coupled Fluid-Structural Thermal Numerical Method[J]. Acta Astronautica, 2018, 146:368-377
[5] 黄杰, 姚卫星, 陈炎, 等. 热防护系统分区协调耦合推进方法[J]. 宇航学报, 2018, 39(1):27-34 Huang Jie, Yao Weixing, Chen Yan, et al. Division Coordinating Coupled Marching Method on Thermal Protection System[J]. Journal of Astronautics, 2018, 39(1):27-34(in Chinese)
[6] Huang J, Yao W X, Li P. Uncertainty Dynamic Theoretical Analysis on Ceramic Thermal Protection System Using Perturbation Method[J]. Acta Astronautica, 2018, 148:41-47
[7] Sawyer J W, Rummler D R. Room Temperature Mechanical Properties of Shuttle Thermal Protection System Materials[R]. NASA TM-81786, 1980
[8] Sawyer J W, Waters W A. Room Temperature Shear Properties of the Strain Isolator Pad for the Shuttle Thermal Protection System[R]. NASA TM-81900, 1981
[9] American Society for Testing and Materials, Standard Test Method for Flatwise Tensile Strength of Sandwich Constructions[S]. C297/C297M-04, 2004
[10] American Society for Testing and Materials, Standard Test Method for Flatwise Compressive Properties of Sandwich Cores[S]. C365-03, 2003
[11] American Society for Testing and Materials, Standard Test Method for Shear Properties of Sandwich Core Materials[S]. C273/C273M-07a, 2007