论文:2018,Vol:36,Issue(6):1027-1036
引用本文:
何小龙, 白俊强, 李立, 杨体浩, 张煜. 飞行器圆柱类部件的气动外形参数化方法[J]. 西北工业大学学报
He Xiaolong, Bai Junqiang, Li Li, Yang Tihao, Zhang Yu. CYFFD Parameterization Method for Cylindrical Components of Aircrafts[J]. Northwestern polytechnical university

飞行器圆柱类部件的气动外形参数化方法
何小龙1, 白俊强1,2, 李立1, 杨体浩1, 张煜1
1. 西北工业大学 航空学院, 陕西 西安 710072;
2. 西北工业大学 无人系统技术研究院, 陕西 西安 710072
摘要:
通过增加坐标转换步骤和虚拟框策略,得到适用于圆柱形物体的cylindrical free-form deformation(CYFFD)参数化方法,既可用于轴对称物体,也可以用于非轴对称物体。CYFFD可捕捉圆柱类物体独特的周向和径向变形特点,并能够保证框边界处曲面的导数和曲率连续。首先,通过使用坐标转换方法可在圆柱坐标系下实现沿周向和径向的变形。其次,由于圆柱形物体的精细外形设计需要,需要布置为首尾相连的贴近物面的控制框,这种布置形式会导致在圆柱周向出现框的边界与曲面的相交,难以保持曲面在控制框边界处的导数连续性,因此引入虚拟框方法并选取一些控制点作为虚拟的控制框点,从而保持导数和曲率连续。使用圆柱外形示例对比了CYFFD和传统方法的变形能力、框边界处的曲率连续特性。机身头部参数化示例表明CYFFD可以和传统FFD协同使用从而实现复杂的变形目的。短舱变形示例和外形拟合示例表明CYFFD可以用于复杂非轴对称圆柱曲面。圆柱头部优化算例表明CYFFD用于优化设计能够得到良好的优化结果,将之用于圆柱类外形的参数化和优化设计中具有实用价值。
关键词:    气动优化设计    参数化    自由型面变形    圆柱自由型面变形    发动机短舱    高铁   
CYFFD Parameterization Method for Cylindrical Components of Aircrafts
He Xiaolong1, Bai Junqiang1,2, Li Li1, Yang Tihao1, Zhang Yu1
1. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
2. Unmanned System Research Institute, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
This paper proposes a parameterization method using cylindrical coordinates based free-form deformation(CYFFD) technique by introducing a coordinate transformation method and a virtual lattice method. The method is suitable for axisymmetric and non-axisymmetric cylindrical applications. CYFFD is able to deform radially and circumferentially and to maintain first order and curvature continuity across frame border. First, the coordinate transformation step helps capture geometrical characteristics of cylindrical objects to conduct radial and circumferential deformation. Due to the need of delicate shape design, FFD lattice need be set up closely around cylinder-like objects and this will cause the boundary of FFD frame to intersect with the objects, which lead to derivative discontinuity at the intersection. The virtual lattice method is introduced to reuse some control points as virtual ones so that first order and curvature continuity can be preserved. A cylinder deformation example compares the capability of CYFFD with that of conventional FFD for radial and circumferential deformation and keeping derivative continuity. An airplane nose example shows the possibility to use CYFFD and NFFD together for complex shape. A nacelle deformation example and fitting example show that CYFFD is valuable for non-axisymmetric cylindrical objects with complex shapes. The optimization example on cylinder nose shape indicates that CYFFD can give good optimization results and it is valuable for parameterizing cylinder-like objects.
Key words:    aircraft aerodynamic optimization    parameterization    free-form deformation    cylindrical free-form deformation    engine nacelle    high-speed train   
收稿日期: 2017-12-05     修回日期:
DOI:
基金项目: 国家自然科学基金(2014CB744804)与航空科学基金(20163203001)资助
通讯作者:     Email:
作者简介: 何小龙(1989-),西北工业大学博士研究生,主要从事飞行器气动优化设计研究。
相关功能
PDF(3911KB) Free
打印本文
把本文推荐给朋友
作者相关文章
何小龙  在本刊中的所有文章
白俊强  在本刊中的所有文章
李立  在本刊中的所有文章
杨体浩  在本刊中的所有文章
张煜  在本刊中的所有文章

参考文献:
[1] Graham W R, Hall C A, Morales M V. The Potential of Future Aircraft Technology for Noise and Pollutant Emissions Reduction[J]. Transport Policy, 2014, 34:36-51
[2] Joslin R D. Aircraft Laminar Flow Control[J]. Annual Review of Fluid Mechanics, 1998, 30(1):1-29
[3] 朱自强,吴宗成,丁举春. 层流流动控制技术及应用[J]. 航空学报,2011, 32(5):765-784 Zhu Ziqiang, Wu Zongcheng, Ding Juchun. Laminar Flow Control Technology and Application[J]. Acta aeronautica et Astronautica Sinica, 2011, 32(5):765-784(in Chinese)
[4] Malik M R, Crouch J D, Saric W S, et al. Application of Drag Reduction Techniques to Transport Aircraft[M]. New Jersey, John Wiley & Sons, Ltd, 2015
[5] Fujino M. Design and Development of the HondaJet[J]. Journal of aircraft, 2005, 42(3):755-764
[6] Drela M. Development of the D8 Transport Configuration[C]//29th AIAA Applied Aerodynamics Conference, 2011
[7] Yao S, Guo D, Sun Z, et al. Optimization Design for Aerodynamic Elements of High Speed Trains[J]. Computers & Fluids, 2014, 95:56-73
[8] Samareh J A. Survey of Shape Parameterization Techniques for High-Fidelity Multidisciplinary Shape Optimization[J]. AIAA Journal, 2001, 39(5):877-884
[9] Song W, Keane A J. Surrogate-Based Aerodynamic Shape Optimization of a Civil Aircraft Engine Nacelle[J]. AIAA Journal, 2007, 45(10):2565
[10] Lépine J, Guibault F, Trepanier J Y, et al. Optimized Nonuniform Rational B-Spline Geometrical Representation for Aerodynamic Design of Wings[J]. AIAA Journal, 2001, 39(11):2033-2041
[11] Kulfan B M. Universal Parametric Geometry Representation Method[J]. Journal of Aircraft, 2008, 45(1):142-158
[12] Sederberg T W, Parry S R. Freeform Deformation of Solid Geometric Models[J]. Computer Graphics, 1986,22(4):151-160
[13] Kulfan B M, Bussoletti J E, Hilmes C L. Aerodynamic Characteristics of Bodies of Revolution at Near-Sonic Speeds[J]. Journal of Aircraft, 2007, 44(6):1815-1841
[14] Fang X, Zhang Y, Chen H. Transonic Nacelle Aerodynamic Optimization Based on Hybrid Genetic Algorithm[C]//17th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 2016
[15] Robinson M, MacManus D G, Heidebrecht A, et al. An Optimization Method for Nacelle Design[C]//55th AIAA Aerospace Sciences Meeting, 2017
[16] 何小龙, 白俊强, 夏露,等. 基于EFFD方法的自然层流短舱优化设计[J]. 航空动力学报, 2014, 29(10):2311-2320 He Xiaolong, Bai Junqiang, Xia Lu, et al. Natural Laminar Flow Nacelle Optimization Design Based on EFFD Method[J]. Journal of Aerospace Power, 2014, 29(10):2311-2320(in Chinese)
[17] Li J, Gao Z, Huang J, et al. Aerodynamic Design Optimization of Nacelle/Pylon Position on an Aircraft[J]. Chinese Journal of Aeronautics, 2013, 26(4):850-857
[18] Lamousin H J, Waggenspack N N. NURBS-Based Free-Form Deformations[J]. IEEE Computer Graphics and Applications, 1994, 14(6):59-65
[19] Ahn W, Lee D Y. Real-Time Resolution of Self-Intersection in Dynamic Cylindrical Free-Form Deformation[J]. IEEE Trans on Visualization and Computer Graphics, 2011, 17(4):515-526
[20] Masters D A, Taylor N J, Rendall T C S, et al. Geometric Comparison of Aerofoil Shape Parameterization Methods[J]. AIAA Journal, 2017, 55(5):1-15
[21] Gatlin G M, Rivers M B, Goodliff S L, et al. Experimental Investigation of the DLR-F6 Transport Configuration in the National Transonic Facility[C]//26th AIAA Applied Aerodynamics Lonference, 2008
[22] 陈颂,白俊强,史亚云,等. 民用客机机翼/机身/平尾构型气动外形优化设计[J/OL]. 航空学报,2015,36(10):3195-3207 Chen Song, Bai Junqiang, Shi Yayun, et al. Aerodynamic Shape Optimization Design of Civil Jet Wing-Body-Tail Configuration[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(10):3195-3207(in Chinese)