论文:2018,Vol:36,Issue(5):875-883
引用本文:
梁佳骅, 白俊强, 李国俊. 基于Peters-ONERA模型的失速颤振特性研究[J]. 西北工业大学学报
Liang Jiahua, Bai Junqiang, Li Guojun. Investigation of Stall Flutter Based on Peters-ONERA Aerodynamic Model[J]. Northwestern polytechnical university

基于Peters-ONERA模型的失速颤振特性研究
梁佳骅, 白俊强, 李国俊
西北工业大学 航空学院, 陕西 西安 710072
摘要:
采用Peters模型模拟线性气动力,ONERA失速模型模拟由于动态失速引起的非线性气动力,通过耦合结构运动方程,建立了状态空间(state-space)形式的气动弹性控制方程。采用欧拉预估-校正方法对该方程进行时域推进求解,采用特征根轨迹分析技术在频域内对气动弹性系统进行稳定性分析。基于Peters-ONERA气动力模型对动态失速现象进行模拟,结果表明该气动力模型可以准确地捕捉动态失速气动力的主要特征。采用该气动弹性模型对亚松弛迭代(under relaxation iteration)方法在静气动弹性求解稳定性中的影响进行了研究,研究结果表明,亚松弛迭代可以增强静气弹求解的稳定性。分别采用频域和时域方法对失速颤振中的颤振临界特性和分岔(bifurcation)现象进行了研究,并分析了初始扰动对系统响应的影响。研究发现:①在大攻角下,非线性气动力模态与结构模态的耦合可能导致结构模态的失稳,从而诱发系统的单自由度颤振;②初始攻角的改变会显著影响系统的分岔特性;③在不同的扰动范围内,气动弹性系统对扰动的敏感度不同,扰动增强可能会使系统原先稳定的状态被激发为极限环振荡(limit cycle oscillation,LCO)状态。
关键词:    失速颤振    动态失速    亚松弛迭代    分岔    扰动   
Investigation of Stall Flutter Based on Peters-ONERA Aerodynamic Model
Liang Jiahua, Bai Junqiang, Li Guojun
School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
The Peters model is used to simulate the linear aerodynamic force and ONERA stall model is used to simulate the nonlinear aerodynamic force. The state-space equation of the aeroelastic system is established by coupling the structural equation. In order to solve problems, Euler predictor corrector method is used in the time domain and eigenvalue analysis method is used in the frequency domain. The case of dynamic stall is simulated based on Peters-ONERA model and the results imply that the validity of the aerodynamic model. The effect of under relaxation iteration on the stability of static aeroelastic solution is studied. It is found that under relaxation iteration can improve the static aeroelastic solution stability. Then based on frequency and time domain methods, flutter critical characteristic and bifurcation phenomenon are studied. It is found that:(1) Under large angle of attack, the coupling between nonlinear aerodynamic modal and structure modal could induce the instability of the structure modal and single degree of freedom flutter. (2) Under different angles of attack, bifurcation characteristic of aeroelastic system is far different. (3) The sensitivity to the disturbance of the system is different in different ranges. When the disturbance increases, the aeroelastic system will change from stable state to limit cycle oscillation.
Key words:    stall flutter    dynamic stall    under relaxation iteration    bifurcation    disturbance    aeroelasticity    angle of attack   
收稿日期: 2017-09-09     修回日期:
DOI:
通讯作者:     Email:
作者简介: 梁佳骅(1994-)。西北工业大学硕士研究生,主要从事气动弹性与主动控制研究。
相关功能
PDF(1930KB) Free
打印本文
把本文推荐给朋友
作者相关文章
梁佳骅  在本刊中的所有文章
白俊强  在本刊中的所有文章
李国俊  在本刊中的所有文章

参考文献:
[1] Xiang Jinwu, Yan Yongju, Li Daochun. Recent Advance in Nonlinear Aeroelastic Analysis and Control of the Aircraft[J]. Chinese Journal of Aeronautics, 2014, 27(1):12-22
[2] Larsen J W, Nielsen S R K, Krenk S. Dynamic Stall Model for Wind Turbine Airfoils[J]. Journal of Fluids and Structures, 2007,23(7):959-982
[3] 寇家庆,张伟伟,叶正寅. 基于分层思路的动态非线性气动力建模方法[J]. 航空学报,2015, 36(12):3785-3797 Kou Jiaqing, Zhang Weiwei, Ye Zhengyin. Dynamic Nonlinear Aerodynamics Modeling Method Based on Layered Model[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(12):3785-3797(in Chinese)
[4] 叶正寅, 张伟伟, 史爱明, 等. 流固耦合力学基础及其应用[M]. 哈尔滨:哈尔滨工业大学出版社, 2010:226-227 Ye Zhengyin, Zhang Weiwei, Shi Aiming, et al. Fundamentals of Fluid-Structure Coupling and Its Application[M]. Harbin, Harbin Institute of Technology Press, 2010:226-227(in Chinese)
[5] Peters D A, Karunamoorthy S, Cao W M. Finite State Induced Flow Models. Part I:Two-Dimensional Thin Airfoil[J]. Journal of Aircraft, 1995, 32(2):313-322
[6] Peters D A, Chouchane M. Effect of Dynamic Stall on Helicopter Trim and Flap-Lag Response[J]. Journal of Fluids and Structures, 1987, 1(3):299-318
[7] Mcalister K W, Lambert O, Petot D. Application of the ONERA Model of Dynamic Stall[R]. DTIC Document, 1984
[8] Tang D M, Dowell E H. Comments on the ONERA Stall Aerodynamic Model and Its Impact on Aeroelastic Stability[J]. Journal of Fluids and Structures, 1996, 10:353-366
[9] Laxman V, Venkatesan C. Chaotic Response of an Airfoil due to Aeroelastic Coupling and Dynamic Stall[J]. AIAA Journal, 2007, 45(1):271-280
[10] Beedy J, Barakos G, Badcock K J, et al. Non-linear Analysis of Stall Flutter Based on the ONERA Aerodynamic Model[J]. Aeronautical Journal, 2003, 107(1074):495-510
[11] Liu Xiangning, Xiang Jinwu. Stall Flutter Analysis of High Aspect Ratio Composite Wing[J]. Chinese Journal of Aeronautics, 2006, 19(1):36-43
[12] Liu Tingrui. Stall Flutter Suppression for Absolutely Divergent Motions of Wind Turbine Blade Base on H-Infinity Mixed-Sensitivity Synthesis Method[J]. Open Mechanical Engineering Journal, 2015, 9(1):752-760
[13] 任勇生,刘廷瑞. 具有结构阻尼的复合材料薄壁梁的动力失速非线性颤振特性[J]. 振动与冲击, 2013, 32(18):146-152 Ren Yongsheng, Liu Yanrui. Stall Nonlinear Flutter Behavior of a Thin-Walled Composite Beam with Structural Damping[J]. Journal of Vibration and Shock, 2013, 32(18):146-152(in Chinese)
[14] Sun Zhiwei, Haghighat Sohrab, Liu Hugh H T, et al. Time-Domain Modeling and Control of a Wing-Section Stall Flutter[J]. Journal of Sound and Vibration, 2015, 340:221-238
[15] Peters D A. Two-Dimensional Incompressible Unsteady Airfoil Theory-an Overview[J]. Journal of Fluids and Structures, 2008, 24(3):295-312
[16] Peters D A, Barwey D, Su A. An Integrated Airloads-Inflow Model for Use in Rotor Aeroelasticity and Control Analysis[J]. Mathematical & Computer Modelling An International Journal, 1994, 19(3/4):109-123
[17] 孙智伟. 高空长航时无人机多学科设计若干问题研究[D]. 西安:西北工业大学,2016 Sun Zhiwei. Investigation of the Problems in Multidisciplinary Design of High Altitude Long Endurance Unmanned Aerial Vehicle[D]. Xi'an, Northwestern Polytechnical University, 2016(in Chinese)
[18] Zhang Jian, Xiang Jinwu. Nonlinear Aeroelastic Response of High-Aspect-Ratio Flexible Wings[J]. Chinese Journal of Aeronautics, 2009, 22:355-363
[19] 李迺璐, 穆安乐, Balas M J. 基于Floquet理论的旋转风机叶片动力失速气弹稳定性研究[J]. 振动与冲击, 2015, 34(24):82-88 Li Nailu, Mu Anle, Balas M J. Aeroelastic Stability Analysis of the Rotating Stall Wind Turbine Blade Based on Floquet Theory[J]. Journal of Vibration and Shock, 2015, 34(24):82-88(in Chinese)
[20] Hodges D H, Pierce G A. Introduction to Structural Dynamics and Aeroelasticity[M]. 2nd Edition. Cambridge, Cambridge University Press, 2011
[21] Lee T, Gerontakos P. Investigation of Flow over an Oscillating Airfoil[J]. Journal of Fluid Mechanics, 2004, 512:313-341