论文:2018,Vol:36,Issue(5):856-864
引用本文:
刘战合, 全金楼, 杨静媛, 苏丹, 张伟伟. 叶轮机失谐叶片流固耦合颤振高效分析方法[J]. 西北工业大学学报
Liu Zhanhe, Quan Jinlou, Yang Jingyuan, Su Dan, Zhang Weiwei. A High Efficient Fluid-Structure Interaction Method for Flutter Analysis of Mistuned[J]. Northwestern polytechnical university

叶轮机失谐叶片流固耦合颤振高效分析方法
刘战合1, 全金楼2,3, 杨静媛3, 苏丹3, 张伟伟3
1. 郑州航空工业管理学院 航空工程学院, 河南 郑州 450046;
2. 中国航空工业集团 中国燃气涡轮研究院, 四川 成都 610500;
3. 西北工业大学 翼型叶栅空气动力学国家重点实验室, 陕西 西安 710072
摘要:
直接流固耦合算法耗时极大,因此传统的失谐叶盘结构系统颤振研究一般将气动力忽略或将其当成小扰动。为了快速、准确分析叶轮机失谐叶片的颤振特性,基于气动力降阶模型提出了一种高效的叶轮机失谐叶片流固耦合分析方法。该方法利用系统辨识技术和一些基本假设来构建叶栅非定常气动力降阶模型,并在状态空间内耦合结构运动方程,得到气动弹性模型,通过改变部分叶片的结构参数来研究失谐对系统流固耦合颤振稳定性的影响。针对STCF 4算例,该方法计算得到的响应结果和直接CFD的结果吻合良好,但计算效率却提高了近2个数量级。运用该方法研究叶排系统的刚度失谐,通过求解气动弹性矩阵的特征值快速获得了系统的稳定性特征。结果表明,刚度失谐可以明显改善系统的颤振稳定性,也会导致模态局部化。失谐方式、失谐量和流固耦合作用对失谐后系统的颤振稳定性都有明显影响。
关键词:    降阶模型    流固耦合    气动弹性    计算效率    颤振    失谐   
A High Efficient Fluid-Structure Interaction Method for Flutter Analysis of Mistuned
Liu Zhanhe1, Quan Jinlou2,3, Yang Jingyuan3, Su Dan3, Zhang Weiwei3
1. School of Aeronautic Engineering, Zhengzhou University of Aeronautics, Zhengzhou 450046, China;
2. CECCS Sichuan Gas Turbine Establishment, Chengdu 610500, China;
3. National Key Laboratory of Aerodynamic Design and Research, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
The time cost is very high by direct fluid-structure interaction method for mistuned bladed disk structures, so aerodynamic loads generally are ignored or treated as small perturbations in traditional flutter analysis. In order to analyze the flutter characteristics of mistuned blade rapidly and accurately, this paper presents an efficient fluid-structure interaction method based on aerodynamic reduced order model. system identification technology and two basic assumptions are used to build the unsteady aerodynamic reduced order model. Coupled the structural equations and the aerodynamic model in the state space, the flutter stability of mistuned bladed disk can be obtained by changing the structural parameters. For the STCF 4 example, the response calculated by this method agrees well with the results obtained by the direct CFD, but the computational efficiency is improved by nearly two orders of magnitude. This method is used to study the stiffness mistuned cascade system, and the stability characteristics of the system are obtained by calculating the eigenvalues of the aeroelastic matrix. The results show that the stiffness mistuning can significantly improve the flutter stability of the system, and also lead to the localization of the mode. The mistuning mode, mistuning amplitude and fluid structure interaction can influence the flutter stability obviously.
Key words:    reduced order model    fluid-structure interaction    aeroelastic    computational efficiency    flutter    mistuned   
收稿日期: 2017-09-09     修回日期:
DOI:
基金项目: 国家自然科学基金(11172237)与航空科学基金(2015ZD55005)资助
通讯作者:     Email:
作者简介: 刘战合(1977-),郑州航空工业管理学院讲师,主要从事流固耦合力学、计算流体力学研究。
相关功能
PDF(3290KB) Free
打印本文
把本文推荐给朋友
作者相关文章
刘战合  在本刊中的所有文章
全金楼  在本刊中的所有文章
杨静媛  在本刊中的所有文章
苏丹  在本刊中的所有文章
张伟伟  在本刊中的所有文章

参考文献:
[1] Kielb R E, Hall K C, Hong E, et al. Probabilistic Flutter Analysis of a Mistuned Bladed Disk[R]. GT2006-90847
[2] Martel C,Corral R,Llorens J M. Stability Increase of Aerodynamically Unstable Rotors Using Intentional Mistuning[J]. Journal of Turbomachinery,2008,130(1):1045-1058
[3] Campobasso M S, Giles M B. Analysis of the Effect of Mistuning on Turbomachinery Aeroelasticity[C]//Proceedings of the IX Unsteady Aerodynamics, Aeroacoustics and Aeroelasticity in Turbomachines, 2001
[4] Whitehead D S. Effect of Mistuning on the Vibration of Turbo-Machine Blades Induced by Wakes[J]. Journal of Mechanical Engineering Science, 1966, 8(1):15-21
[5] Dye R C F, Henry T A. Vibration Amplitudes of Compressor Blades Resulting from Scatter in Blade Natural Frequencies[J]. ASME Journal of Engineering for Power, 1969, 91(7):182-188
[6] Kaza K R V, Kielb R E. Flutter and Response of a Mistuned Cascade in Incompressible Flow[J]. AIAA Journal, 1982, 20(8):1120-1127
[7] Pierre C, Murthy D. Aeroelastic Model Characteristics of Mistuned Blade Assemblies:Mode Localization and Loss of Eigenstructure[J]. AIAA Journal, 1992, 30(10):2483-2496
[8] Pierre C, Smith T E, Murthy D. Localization of Aeroelastic Modes in Mistuned High-Energy Turbines[J]. Journal of Propulsion and Power, 1994, 10(3):318-328
[9] Bladh R, Pierre C, Castanier M P, et al. Dynamic Response Predictions for a Mistuned Industrial Turbomachinery Rotor Using Reduced-Order Modeling[J]. Journal of Engineering for Gas Turbines and Power, 2002, 124(2):311-324
[10] Judge J, Pierre C, Mehmed O. Experimental Investigation of Mode Localization and Forced Response Amplitude Magnification for a Mistuned Bladed Disk[J]. Journal of Engineering for Gas Turbines and Power, 2001, 123(4):940-950
[11] Saito A, Castanier M P, Pierre C. Effects of a Cracked Blade on Mistuned Turbine Engine Rotor Vibration[J]. Journal of Vibration and Acoustics, 2009, 131(12):1-9
[12] Song S H, Castanier M P, Pierre C. System Identification of Multistage Turbine Engine Rotors[C]//ASME Turbo Expo 2007:Power for Land, Sea and Air, 2007:569-582
[13] Petrov E P, Sanliturk K Y, Ewins D J. A New Method for Dynamic Analysis of Mistuned Bladed Disks Based on the Exact Relationship between Tuned and Mistuned Systems[J]. Journal of Engineering for Gas Turbines and Power, 2002, 124(3):586-597
[14] Petrov E P, Ew ins D J. Analysis of the Worst Mistuning Patterns in Bladed Disk Assemblies[J]. Journal of Turbomchinery, 2003, 125(4):623-631
[15] Petrov E P. Reduction of Forced Response Levels for Bladed Discs by Mistuning:Overview of the Phenomenon[J]. Journal of Engineering for Gas Turbines & Pouver, 2011, 133(7):1039-1051
[16] Petrov E P. A Method for Forced Response Analysis of Mistuned Bladed Disks with Aerodynamic Effects Included[J]. Journal of Engineering for Gas Turbines and Power, 2010,132(6):1-10
[17] Petrov E P, Ewins D J. Method for Analysis of Nonlinear Multiharmonic Vibrations of Mistuned Bladed Disks with Scatter of Contact Interface Characteristics[J]. Journal of Turbomachinery, 2005, 127(1):128-136
[18] Miyakozaw a T, Kielb R E, H all K C, et al. The Effects of Aerodynamic Asymmetric Perturbations on Forced Response of Bladed Disks[J]. Journal of Turbomachinery, 2009, 131(10):1-8
[19] Kaza K R V, Kielb R E. Flutter and Response of a Mistuned Cascade in Incompressible Flow[J]. AIAA Journal, 1982, 20(20):1120-1127
[20] Sadeghi M, Liu F. Computation of Mistuning Effects on Cascade Flutter[J]. AIAA Journal, 2001, 39(1):22-28
[21] Sadeghi M, Liu F. Investigation of Mistuning Effects on Cascade Flutter Using a Coupled Method[J]. Journal of Propulsion and Power, 2007, 23(2):266-272
[22] 全金楼, 张伟伟, 苏丹,等. 基于CFD/CSD时域耦合方法的多通道叶栅颤振分析[J].航空学报, 2013,34(9):2019-2028 Quan Jinlou, Zhang Weiwei, Su Dan, et al. Flutter Analysis of Turbomachinery Cascades Based on Coupled CFD/CSD Method[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(9):2019-2028(in Chinese)
[23] Hanamura Y, Tanaka H, Yamaguchi K. A Simplified Method to Measure Unsteady Forces Acting on the Vibrating Blades in Cascade[J]. JSME International Journal, 2008, 23(180):880-887
[24] 张陈安,张伟伟,叶正寅,等. 一种高效的叶轮机叶片气动阻尼计算方法[J].力学学报,2011,43(5):826-833 Zhang Chen'an, Zhang Weiwei, Ye Zhengyin, et al. An Efficient Method on Aerodynamic Damping Coefficient Calculation for Turbomachinery.[J] Chinese Journal of Theoretical and Applied Mechanics, 2011,43(5):826-833. (in Chinese)
[25] 苏丹,张伟伟,张陈安,等.基于系统辨识技术的叶轮机非定常气动力建模方法[J].航空学报,2012, 33(2):242-248 Su Dan, Zhang Weiwei, Zhang Chen'an, et al. An Unsteady Aerodynamic Modeling for Turbomachinery Based on System Identification[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(2):242-248(in Chinese)
[26] Su Dan, Zhang Weiwei, Ye Zhengyin. A Reduced Order Model for Uncoupled and Coupled Cascade Flutter Analysis[J]. Journal of Fluids and Structures, 2016, 61:410-430
相关文献:
1.倪迎鸽, 侯赤, 万小朋, 赵美英.折叠机翼的参数化气动弹性建模与颤振分析[J]. 西北工业大学学报, 2015,33(5): 788-793
2.马艳峰, 贺尔铭, 曾宪昂, 李俊杰, 唐长红.基于流固耦合方法的大展弦比机翼非线性颤振特性分析[J]. 西北工业大学学报, 2014,32(4): 535-541
3.白俊强, 辛亮, 刘艳, 华俊, 李国俊.复合材料后掠机翼的气动弹性剪裁方法研究[J]. 西北工业大学学报, 2014,32(6): 843-848
4.胡巍, 杨智春, 谷迎松.带操纵面机翼气动弹性地面试验仿真系统中的气动力降阶方法[J]. 西北工业大学学报, 2013,31(5): 810-815