论文:2018,Vol:36,Issue(5):839-847
引用本文:
沈克纯, 潘光, 姜军, 黄桥高, 施瑶. 静水压力下纤维缠绕圆柱壳体的稳定性分析[J]. 西北工业大学学报
Shen Kechun, Pan Guang, Jiang Jun, Huang Qiaogao, Shi Yao. Stability of Filament-Wound Composite Cylinders Subjected to Hydrostatic Pressure[J]. Northwestern polytechnical university

静水压力下纤维缠绕圆柱壳体的稳定性分析
沈克纯, 潘光, 姜军, 黄桥高, 施瑶
1. 西北工业大学 航海学院, 陕西 西安 710072;
2. 西北工业大学 无人水下运载技术重点实验室, 陕西 西安 710072
摘要:
为更清楚地认识静水压力作用下纤维缠绕圆柱壳体的耐压特性、解决深海耐压舱体的结构稳定性问题以及给工程设计提供参考,有必要对纤维缠绕圆柱壳体的结构稳定性进行深入研究。在弹性薄壳理论的基础上,推导出纤维缠绕圆柱壳体稳定性控制方程,采用Galerkin方法求解纤维缠绕圆柱壳体受静水压力作用下的临界失稳载荷。以正交缠绕、金属-纤维缠绕复合结构、斜交缠绕等几种形式的壳体结构为对象进行解析,并与实验结果对比,验证了求解的有效性和正确性。在此基础上,建立了基于遗传算法与解析方案一体式的优化平台,对[(±θ12],[(±θ1x/(±θ212-x]及[(±θ14/(±θ24/(±θ34]缠绕形式的圆柱壳体进行优化设计,研究纤维缠绕角度、对应层数及设计变量个数对临界失稳载荷的影响。结果表明,纤维缠绕角度对临界失稳载荷有显著影响,通过数值优化稳定性分别提高31.31%,43.25%及57.17%;随着角度变量的增加,优化得到的临界失稳载荷越大,最优可提高57.17%。
关键词:    静水压力    纤维缠绕    圆柱壳体    稳定性    临界失稳载荷   
Stability of Filament-Wound Composite Cylinders Subjected to Hydrostatic Pressure
Shen Kechun, Pan Guang, Jiang Jun, Huang Qiaogao, Shi Yao
1. School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China;
2. Key Laboratory for Unmanned Underwater Vehicle, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
In order to know the mechanical properties of filament-wound composite cylindrical shells subjected to hydrostatic pressure, solve the buckling problem of pressure hull in deep sea and provide reference for engineering design, it is necessary to research the stability of filament-wound composite cylindrical shells. Based on the theory of thin shells, the governing equations were derived. Stability of composite cylindrical shells was researched by employing Galerkin method to solve the eigenvalue equation. The critical buckling pressure was calculated for cross filament-wound, metal-filament-wound and angle filament-wound composite cylinders under hydrostatic pressure. Compared to the test results, the numerical solution was illustrated to be feasibility. On this basis, the numerical method was interacted with genetic algorithm to search optimum stacking sequence and filament winding angle. Three types of winding pattern [(±θ)12],[(±θ1)x/(±θ2)12-x] and[(±θ1)4/(±θ2)4/(±θ3)4] were investigated,. Further, the effects of winding angle and the corresponding layer number on the critical buckling pressure were evaluated. It was shown that winding angle variation affected the critical buckling pressure significantly. Stability was greatly improved by numerical optimization, and the maximum critical buckling loads are increased by 31.31%, 43.25% and 57.51% compared with the base line, respectively. As the number of design variable increased, the carrying capacity was improved markedly. The optimal critical buckling pressure was increased by 57.17%.
Key words:    hydrostatic pressure    filament-wound    cylindrical shells    stability    critical buckling pressure   
收稿日期: 2017-09-09     修回日期:
DOI:
基金项目: 国家自然科学基金(51479170,51879220,61803306)与国家重点研发计划(2016YFC0301300)资助
通讯作者:     Email:
作者简介: 沈克纯(1987-),西北工业大学博士研究生,主要从事水下耐压壳体结构强度、稳定性研究。
相关功能
PDF(1550KB) Free
打印本文
把本文推荐给朋友
作者相关文章
沈克纯  在本刊中的所有文章
潘光  在本刊中的所有文章
姜军  在本刊中的所有文章
黄桥高  在本刊中的所有文章
施瑶  在本刊中的所有文章

参考文献:
[1] 徐伟哲, 张庆勇. 全海深潜水器的技术现状和发展综述[J]. 中国造船, 2016, 57(2):206-221 Xu Weizhe, Zhang Qingyong. Overview of Present Status and Development Trend of Full Ocean Depth Submersibles[J]. Shipbuilding of China, 2016, 57(2):206-221(in Chinese)
[2] 李文跃, 王帅, 刘涛. 大深度载人潜水器耐压壳结构研究现状及最新进展[J]. 中国造船, 2016, 57(1):210-221 Li Wenyue, Wang Shuai, Liu Tao. Current Status and Progress on Pressure Hull Structure of Manned Deep Submersible[J]. Shipbuilding of China, 2016, 57(1):210-221(in Chinese)
[3] Ross C T F. A Conceptual Design of an Underwater Vehicle[J]. Ocean Engineering, 2006, 33(16):2087-2104
[4] 王珂晟. 复合材料圆柱壳稳定性分析及其新算法研究[D]. 长沙:中国人民解放军国防科学技术大学, 2002 Wang Kesheng. Study on Stability of Composite Cylindrical Shell and Its New Algorithm[D]. Changsha, National University of Defense Technology, 2002(in Chinese)
[5] 李志敏. 船舶与海洋工程中复合材料圆柱壳结构屈曲和后屈曲行为研究[D]. 上海:上海交通大学, 2008 Li Zhimin. Buckling and Postbuckling Behavior of Composite Cylindrical Shell Structures in Naval Architecture and Ocean Engineering[D]. Shanghai, Shanghai Jiaotong University, 2008(in Chinese)
[6] Messager T. Buckling of Imperfect Laminated Cylinders under Hydrostatic Pressure[J]. Composite Structures, 2001, 53(3):301-307
[7] Messager T, Pyrz M, Gineste B, et al. Optimal Laminations of Thin Underwater Composite Cylindrical Vessels[J]. Composite Structures, 2002, 58(4):529-537
[8] Lopatin A V, Morozov E V. Buckling of the Composite Sandwich Cylindrical Shell with Clamped Ends under Uniform External Pressure[J]. Composite Structures, 2015, 122:209-216
[9] Lopatin A V, Morozov E V. Buckling of Composite Cylindrical Shells with Rigid End Disks under Hydrostatic Pressure[J]. Composite Structures, 2017, 173:136-143
[10] Hur S H, Son H J, Kweon J H, et al. Postbuckling of Composite Cylinders under External Hydrostatic Pressure[J]. Composite Structures, 2008, 86(1):114-124
[11] Cai B, Liu Y, Liu Z, et al. Reliability-Based Load and Resistance Factor Design of Composite Pressure Vessel under External Hydrostatic Pressure[J]. Composite Structures, 2011, 93(11):2844-2852
[12] Moon C J, Kim I H, Choi B H, et al. Buckling of Filament-Wound Composite Cylinders Subjected to Hydrostatic Pressure for Underwater Vehicle Applications[J]. Composite Structures, 2010, 92(9):2241-2251