论文:2018,Vol:36,Issue(5):816-823
引用本文:
于涵, 索建秦, 朱鹏飞, 郑龙席. 中心分级贫油直喷(LDI)燃烧室流动及污染排放特性研究[J]. 西北工业大学学报
Yu Han, Suo Jianqin, Zhu Pengfei, Zheng Longxi. The Characteristic of Flow Field and Emissions of a Concentric Staged Lean Direct Injection (LDI) Combustor[J]. Northwestern polytechnical university

中心分级贫油直喷(LDI)燃烧室流动及污染排放特性研究
于涵, 索建秦, 朱鹏飞, 郑龙席
西北工业大学 动力与能源学院, 陕西 西安 710072
摘要:
对中心分级贫油直喷燃烧室流动和污染排放特性进行了数值模拟研究,分别在慢车和起飞工况下研究了燃烧室冷态和热态的流动特性,分析了燃烧释热对流场形态的影响,得到了主油喷射角度对污染排放的影响规律。计算结果表明:副模采用旋流角为32°的中等强度旋流仍然能够在冷态和热态条件下形成稳定的中心回流区,但是热态下回流区尺寸和回流量较冷态显著增大;随着主油喷射角度的减小,燃烧反应区向下游方向移动,缩短了高温燃气在燃烧室内的停留时间,有利于降低燃烧室氮氧化物的生成量。
关键词:    中心分级    贫油直喷    低污染    流场    喷射角度   
The Characteristic of Flow Field and Emissions of a Concentric Staged Lean Direct Injection (LDI) Combustor
Yu Han, Suo Jianqin, Zhu Pengfei, Zheng Longxi
School of Power and Energy, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
The characteristic of flow field and emissions was investigated by numerical simulation for a concentric staged lean direct injection combustor, the non-reaction and reaction flow fields were studied under idle and takeoff conditions, and the effect of combustion heat release on flow field was analyzed, then the influence of injection angle on emissions were obtained. The investigation results indicated that the steady central recirculation zone could be formed under non-reaction and reaction conditions by medium swirl strength which the swirl angle is 32°, however, the size and reverse mass flow at reaction conditions is significantly increased than non-reaction conditions; the combustion reaction zone moves toward the outlet as the decrease of fuel injection angle, which reduce the resistant time of hot gas in combustor, and then the production of nitrogen oxides would be decreased.
Key words:    concentric staged    lean direct injection    low emission    fluid field    injection angle   
收稿日期: 2017-09-09     修回日期:
DOI:
通讯作者:     Email:
作者简介: 于涵(1991-),西北工业大学博士研究生,主要从事航空发动机低污染燃烧技术研究。
相关功能
PDF(4141KB) Free
打印本文
把本文推荐给朋友
作者相关文章
于涵  在本刊中的所有文章
索建秦  在本刊中的所有文章
朱鹏飞  在本刊中的所有文章
郑龙席  在本刊中的所有文章

参考文献:
[1] Tim C Lieuwen, Vigor Yang. Gas Turbine Emissions[M]. Cambridge University Press, 2013
[2] Lefebvre A H, Ballal D R. Gas Turbine Combustion[M]. Taylor & Francis Press, 1999
[3] Michael J Foust, Doug Thomsen, Rick Stickles, et al. Development of the GE Aviation Low Emissions TAPS Combustor for Next Generation Aircraft Engines[C]//50th AIAA Aerospace Sciences Meeting, Nashville, Tennessee, 2012
[4] Lee Chiming, Chang Clarence, Stephen Kramer, et al. NASA Project Develops Next Generation Low-Emissions Combustor Technologies[C]//51st AIAA Aerospace Sciences Meeting, Texas, 2013
[5] 金如山, 索建秦. 先进燃气轮机燃烧室[M]. 北京:航空工业出版社, 2016 Jin Rushan, Suo Jianqin. Advanced Gas Turbine Combustor[M]. Beijing, Aviation Industry Press, 2016(in Chinese)
[6] Fu Y. Aerodynamics and Combustion of Axial Swirlers[D]. Cincinnati, University of Cincinnati, 2008
[7] Dewanji D, Rao G, Pourquie M, et al. Investigation of Flow Characteristics in Lean Direct Injection Combustors[J]. Journal of Propulsion & Power, 2012, 28(1):181-196
[8] Dewanji D, Rao G. Spray Combustion Modeling in Lean Direct Injection Combustors, Part I:Single-Element LDI[J]. Combustion Science and Technology, 2015, 187(4):537-557
[9] Dewanji D, Rao G. Spray Combustion Modeling in Lean Direct Injection Combustors, Part Ⅱ:Multi-Point LDI[J]. Combustion Science and Technology, 2015, 186(4):558
[10] Villalva Gomez R. Structure, Stability and Emissions of Lean Direct Injection Combustion, including a Novel Multi-Point LDI System for NOx Reduction[D]. Delft, Delft University, 2013
[11] Patel N, Klrtas M, Sankaran V, et al. Simulation of Spray Combustion in a Lean-Direct Injection Combustor[J]. Proceedings of the Combustion Institute, 2007, 31(2):2327-2334
[12] Patel N, Menon S. Simulation of Spray-Turbulence-Flame Interactions in a Lean Direct Injection Combustor[J]. Combustion & Flame, 2008, 153(1/2):228-257
[13] Heath C M. Characterization of Swirl-Venturi Lean Direct Injection Designs for Aviation Gas Turbine Combustion[J]. Journal of Propulsion & Power, 2014, 30(5):1334-1356
[14] Heath C M. Parametric Modeling Investigation for Radially Staged Low-Emission Combustion[J]. Journal of Propulsion & Power, 2016, 32(2):1-16
[15] 吴垚锃, 黄勇, 王方,等. 不同结构多点喷射燃烧室冷态流场研究[J]. 航空动力学报, 2010, 25(7):1536-1544 Wu Yaozeng, Huang Yong, Wang Fang, et al. Investigation of Cold Flow Field of A Multi-injection Combustor with Different geometries[J]. Journal of Aerospace Power, 2010, 25(7):1536-1544(in Chinese)
[16] 朱宇, 张群, 徐华胜,等. 轴向旋流器几何对回流区的影响[J]. 航空动力学报, 2014, 29(11):2684-2693 Zhu Yu, Zhang Qun, Xu Huasheng, et al. Effects of Geometry on Characteristic of Central Toroidal Recirculation Zone Generated by an Axial Swirler[J]. Journal of Aerospace Power, 2014, 29(11):2684-2693(in Chinese)
[17] 张川, 索建秦, 金如山. 民用飞机低污染燃烧室的技术成熟度划分[J]. 航空工程进展, 2010, 1(1):85-89 Zhang Chuan, Suo Jianqin, Jin Rushan. Technology Readiness Level Scale for Low Emission Combustor of Civil Aircraft[J]. Advances in Aeronautical Science and Engineering, 2010, 1(1):85-89(in Chinese)
[18] Hsiao G, Mongia H. Swirl Cup Modeling Part 3:Grid Independent Solution with Different Turbulence Models[C]//Aerospace Sciences Meeting and Exhibit, 2015