论文:2018,Vol:36,Issue(4):636-643
引用本文:
杨文青, 宋笔锋, 高广林. 仿生微型扑翼飞行器飞行性能计算与分析[J]. 西北工业大学学报
Yang Wenqing, Song Bifeng, Gao Guanglin. Flight Performance Estimation of Bionic Flapping-Wing Micro Air Vehicle[J]. Northwestern polytechnical university

仿生微型扑翼飞行器飞行性能计算与分析
杨文青1, 宋笔锋1, 高广林2
1. 西北工业大学 航空学院, 陕西 西安 710072;
2. 北京空天技术研究所, 北京 100074
摘要:
仿生微型扑翼飞行器是近年来国内外的研究热点,飞行性能计算是飞行器总体设计过程中的重要步骤。首先分析了扑翼飞行器与常规固定翼飞行器在性能估算方法方面的不同之处,基于扑翼气动计算与风洞实验测量的结果,提出了扑翼飞行器性能计算方法,并对所研制的扑翼飞行器的平飞性能、爬升性能、续航性能进行了计算与分析。扑翼的频率在一定程度上代表油门,而频率和升力、推力均是耦合的关系。计算结果表明,在一定频率下,可能存在2种稳定巡航状态,一种是小迎角大速度,一种是大迎角小速度,两者对应不同的功耗。根据飞行器的参数可以计算出上升性能和续航性能,扑翼飞行器的速度功率特性曲线为U字形,通过作图法可求得曲线的最小斜率为远航速度,U形曲线的速度最小值为久航速度。该飞行性能计算方法可用于评估仿生扑翼飞行器的飞行能力。
关键词:    仿生    扑翼    微型飞行器    总体设计    飞行性能计算   
Flight Performance Estimation of Bionic Flapping-Wing Micro Air Vehicle
Yang Wenqing1, Song Bifeng1, Gao Guanglin2
1. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
2. Beijing Institute of Aerospace Technology, Beijing 100074, China
Abstract:
Bionic flapping-wing micro air vehicle(MAV) has received worldwide attention. The flight performance calculation is an important step in the conceptual design. The differences in performance estimation methods between the flapping-wing and conventional fixed-wing aircraft are analyzed. Based on the results of the aerodynamic estimation and wind tunnel experimental measurement, the flight performance estimation method of flapping-wing micro air vehicle is proposed, and the performance of level flight, climbing, and duration are calculated and analyzed. The frequency represents the accelerator in a certain extent, while the frequency is coupled with lift and thrust. The results show that there may be two stable cruising states at certain frequencies, one is the small angle of attack with high speed, the other is the small speed with big angle of attack, and the two states have different power consumption. According to the parameters of the vehicle, climbing performance and duration performance can be obtained. The speed versus power characteristic curve is a U shape, minimum slope of the U curve can be obtained through the mapping method to calculate the farthest flight speed, and the minimum velocity of U-shaped curve is the speed for longest duration. The proposed flight performance calculation method can be used to evaluate the flight capability of bionic micro flapping-wing air vehicle.
Key words:    bionic    flapping-wing    micro air vehicle(MAV)    conceptual design    flight performance   
收稿日期: 2017-09-01     修回日期:
DOI:
基金项目: 国家自然科学基金(11402208,U1613227)资助
通讯作者:     Email:
作者简介: 杨文青(1980-),女,西北工业大学副教授,主要从事仿生微型飞行器总体设计与气动分析等研究。
相关功能
PDF(1400KB) Free
打印本文
把本文推荐给朋友
作者相关文章
杨文青  在本刊中的所有文章
宋笔锋  在本刊中的所有文章
高广林  在本刊中的所有文章

参考文献:
[1] 侯宇, 方宗德, 孔建益,等. 仿生扑翼飞行微机器人研究现状与关键技术[J]. 机械设计, 2008, 25(7):1-4 Hou Yu, Fang Zongde, Kong Jianyi, et al. Current Research Status and Key Technology of Bionic Flapping Wing Flying Mini-Robots[J]. Journal of Machine Design, 2008, 25(7):1-4(in Chinese)
[2] 肖永利, 张琛. 微型飞行器的研究现状与关键技术[J]. 宇航学报, 2001, 22(5):26-32 Xiao Yongli, Zhang Chen. Study on Present Situation and Development of Micro Air Vehicles[J]. Journal of Astronautics, 2001, 22(5):26-32(in Chinese)
[3] 董捷, 饶炜, 孟林智,等. 国外火星低空飞行器技术发展研究[J]. 航天器工程, 2017, 26(1):110-119 Dong Jie, Rao Wei, Meng Linzhi, et al. Research of Technology Development for Martian Low-Altitude Vehicles[J]. Spacecraft Engineering, 2017, 26(1):110-119(in Chinese)
[4] Shyy W, Aono H, Chimakurthi S K, et al. Recent Progress in Flapping Wing Aerodynamics and Aeroelasticity[J]. Progress in Aerospace Sciences, 2010, 46(7):284-327
[5] 杨文青, 宋笔锋, 宋文萍,等. 仿生微型扑翼飞行器中的空气动力学问题研究进展与挑战[J]. 实验流体力学, 2015(3):1-10 Yang Wenqing, Song Bifeng, Song Wenping, et al. The Progress and Challenges of Aerodynamics in the Bionic Flapping-Wing Micro Air Vehicle[J]. Journal of Experiments in Fluid Mechanics, 2015(3):1-10(in Chinese)
[6] 贺威, 丁施强, 孙长银. 扑翼飞行器的建模与控制研究进展[J]. 自动化学报, 2017, 43(5):685-696 He Wei, Ding Shiqiang, Sun Changyin. Research Progress on Modeling and Control of Flapping-Wing Air Vehicles[J]. Acta Automatica Sinica, 2017, 43(5):685-696(in Chinese)
[7] Keennon M, Klingebiel K, Won H, et al. Development of the Nano Hummingbird:A Tail-Less Flapping Wing Micro Air Vehicle[C]//50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Nashville, Tennessee, 2012
[8] Festo. SmartBird[EB/OL].(2011-04-11)[2017-10-01]. Http://www.Festo.Com/Group/En/Cms/10238.Htm
[9] Festo. BionicOpter[EB/OL].(2013-04-01)[2017-10-01]. Http://www.Festo.Com/Group/En/Cms/10224.Htm
[10] Graule M A, Chirarattananon P, Fuller S B, et al. Perching and Takeoff of a Robotic Insect on Overhangs Using Switchable Electrostatic Adhesion[J]. Science, 2016, 352(6288):978-982
[11] Yang W, Song B, Wang L, et al. Dynamic Fluid-Structure Coupling Method of Flexible Flapping Wing for MAV[J]. Journal of Aerospace Engineering, 2015, 28(6):04015006
[12] 黄鸣阳, 肖天航, 昂海松. 多段柔性变体扑翼飞行器设计[J]. 航空动力学报, 2016, 31(8):1838-1844 Huang Mingyang, Xiao Tianhang, Ang Haisong. Design of an Ornithopter with Multisection Flexible Morphing Wings[J]. Journal of Aerospace Power, 2016, 31(8):1838-1844(in Chinese)
[13] Pan E, Chen L, Zhang B, et al. A Kind of Large-Sized Flapping Wing Robotic Bird:Design and Experiments[C]//The 10th International Conference on Intelligent Robotics and Applications, 2017:538-550
[14] 迟鹏程, 张卫平, 陈文元,等. 基于Mems技术的SU-8仿昆虫微扑翼飞行器设计及制作[J]. 机器人, 2011, 33(3):366-370 Chi Pengcheng, Zhang Weiping, Chen Wenyuan, et al. Design and Fabrication of an SU-8 Biomimetic Flapping-Wing Micro Air Vehicle by Mems Technology[J]. Robot, 2011, 33(3):366-370(in Chinese)
[15] Hall K C, Pigott S A, Hall S R. Power Requirements for Large-Amplitude Flapping Flight[J]. Journal of Aircraft, 1998, 35(3):352-361
[16] Nudds R L, Bryant D M. The Energetic Cost of Short Flights in Birds[J]. Journal of Experimental Biology, 2000, 203(10):1561-1572
[17] Pennycuick C J. Modelling the Flying Bird[M]. Cambridge, Massachusetts, Academic Press, 2008
[18] 杨文青, 宋笔锋, 宋文萍. N-S方程数值研究翼型对微型扑翼气动特性的影响[J]. 计算力学学报, 2011, 28(2):214-220 Yang Wenqing, Song Bifeng, Song Wenping. The Effect of Airfoil to Aerodynamics Characteristics of Flapping Wing by Numerical Simulation on Navier-Stokes Equations[J]. Chinese Journal of Computational Mechanics, 2011, 28(2):214-220(in Chinese)
[19] 邵立民. 微型扑翼飞行器关键技术及总体设计方法研究[D]. 西安:西北工业大学,2008 Shao Limin. Investigation of Pivotal Technology and Conceptional Design Method for Flapping-Wing Micro Air Vehicles[D]. Xi'an, Northwestern Polytechnical University, 2008(in Chinese)
[20] 付鹏, 宋笔锋, 梁少然,等. 扑翼的推力特性与功率特性的实验研究[J]. 西北工业大学学报, 2016, 34(6):976-981 Fu Peng, Song Bifeng, Liang Shaoran, et al. An Experimental Research about the Characteristics of Thrust and Power of FMAV[J]. Journal of Northwestern Polytechnical University, 2016, 34(6):976-981(in Chinese)
[21] Iii H H O, Pennycuick C J, Fuller M R. Wind Tunnel Experiments to Assess the Effect of Back-Mounted Radio Transmitters on Bird Body Drag[J]. The Journal of Experimental Biology, 1988(135):265-273
[22] Pennycuick C J, Alerstam T, Hedenstrom A. A New Low-Turbulence Wind Tunnel for Bird Flight Experiments at Lund University, Sweden[J]. The Journal of Experimental Biology, 1997, 200:1441-1449
[23] 方振平, 陈万春, 张曙光. 航空飞行器飞行动力学[M]. 北京:北京航空航天大学出版社, 2005 Fang Zhenping, Chen Wanchun, Zhang Shuguang. Aviation Flight Dynamics[M]. Beijing, Beijing University of Aeronautics and Astronautics Press, 2005(in Chinese)
[24] Pamadi B N. Performance, Stability, Dynamics and Control of Airplanes[M]. Inertial Navigation, 2004
[25] Delaurier J D. An Aerodynamic Model for Flapping-Wing Flight[J]. Aeronautical Journal, 1993, 97(964):125-130