论文:2017,Vol:35,Issue(5):843-849
引用本文:
李立, 白俊强, 郭同彪, 傅子元, 陈颂. 基于伴随方法的超声速客机机翼气动优化设计[J]. 西北工业大学学报
Li Li, Bai Junqiang, Guo Tongbiao, Fu Ziyuan, Chen Song. Aerodynamic Optimization Design of the Supersonic Aircraft Based on Discrete Adjoint Method[J]. Northwestern polytechnical university

基于伴随方法的超声速客机机翼气动优化设计
李立1, 白俊强1, 郭同彪1, 傅子元1, 陈颂2
1. 西北工业大学 航空学院, 陕西 西安 710072;
2. 湖北航天飞行器研究所, 湖北 武汉 430040
摘要:
采用基于RANS (Reynolds-averaged Navier-Stokes)方程的离散伴随方法,针对超声速客机构型开展了气动减阻优化设计研究。将自由型面变形(FFD,free form deformation)参数化技术、基于逆距离权重插值算法(IDW:inverse distance weighting)的网格变形算法和基于序列二次规划算法(SQP:sequential quadratic programming)的梯度优化算法等进行组装,建立了一套基于梯度的气动优化设计系统。通过该系统对超声速客机机翼实现精细参数化并基于此添加考虑结构要求及容积要求的厚度约束,继而进行了以全机阻力最小为设计目标的气动优化设计研究。设计结果表明,全机阻力减幅达到5.7%,机翼的激波区域得到有效抑制、激波强度明显降低,并且中外翼段压力分布形态表现出前缘吸力峰值降低,逆压梯度减弱,压力恢复更加平缓的特征。
关键词:    离散伴随方法    超声速客机    气动优化设计    激波阻力    压力分布   
Aerodynamic Optimization Design of the Supersonic Aircraft Based on Discrete Adjoint Method
Li Li1, Bai Junqiang1, Guo Tongbiao1, Fu Ziyuan1, Chen Song2
1. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
2. Hubei Space Vehicle Research Institute, Wuhan 430040, China
Abstract:
The study on the aerodynamic optimization design of the SSA(supersonic aircraft) is presented. And a gradient-based aerodynamic optimization system is build, which includes the FFD (free-form deform) parameterizatioN technique, the discrete adjoint technique based on RANS(Reynolds Averaged Navier-Stokes)equations, the mesh deformation technique based on IDW(Inverse distance weighting) and the gradient-based optimization algorithm based on the sequential quadratic programming. With the application of the system, the elaborate parameterization and thickness constraints considering structure and volume are realized on the SSA, leading to a aerodynamic optimization research aiming at the minimum of the aircraft drag. The results of optimization case shows that the aircraft drag is reduced by 5.7%, and the shock wave of the wing weakens, also, the pressure distribution in the mid and outer wing has a lower negative pressure peak of the leading edge, a weaker adverse pressure gradient and a more gentle pressure recovery.
Key words:    discrete adjoint method    supersonic aircraft    aerodynamic optimization design    shock wave drag    pressure distribution    drag reduction    parameterization    mesh generation    aerodynamic configuration   
收稿日期: 2017-03-02     修回日期:
DOI:
基金项目: 国家"973"计划(2014CB744804)资助
通讯作者:     Email:
作者简介: 李立(1980-),西北工业大学硕士研究生,主要从事飞行器气动优化设计研究。
相关功能
PDF(2193KB) Free
打印本文
把本文推荐给朋友
作者相关文章
李立  在本刊中的所有文章
白俊强  在本刊中的所有文章
郭同彪  在本刊中的所有文章
傅子元  在本刊中的所有文章
陈颂  在本刊中的所有文章

参考文献:
[1] Wilhite A W, Shaw R J. An Overview of NASA's High-Speed Research Program[R]. NaTional Aeronautics and Space Administration Hampton VA Langley Research Center, 2000
[2] 昂海松. 大型飞机的总体布局设计分析[J]. 航空制造技术, 2009(2):38-43 Ang Haisong. General Layout Design Analysis of Large Aircraft[J]. Aeronautical Manufacturing Gechnology,2009(2):38-43(in Chinese)
[3] 高培仁. 民用飞机设计参考机种之一图-144超音速运输机[J]. 民用飞机设计与研究, 2015(3):99-102 Gao Peiren. Tu-144 Supersonic Transport[J]. Civil Aircraft Design and Resarch, 2015(3):99-102(in Chinese)
[4] Schmitt V, Redeker G. Research Programs for Transport Aircraft in Europe[C]//2000 World Aviation Conference, 2000:5549
[5] Hanai T, Yoshida K, Usuki K, Tamaki T. Research Trend in Supersonic Transport[J]. Journal of the Japan Society for Aeronautics and Space Science 1989; 37(430):1-13
[6] 辛尊. 高速民用运输机机翼气动和结构优化设计[D]. 南京:南京航空航天大学, 2011 Xin Zun. Wing Aerodynamic-Structural Optimization Design of a High Speed Civil Transpor[D]. Nanjing, Nanjing University of Aeronautics and Astronautics, 2011(in Chinese)
[7] 熊俊涛, 乔志德, 杨旭东, 等. 基于黏性伴随方法的跨声速机翼气动优化设计[J]. 航空学报, 2007, 28(2):281-286 Xiong Juntao, Qiao Zhide, Yang Xudong, et al. Optimum Aerodynamic Design of Transonic Wing Based on Viscous Adjoint Method[J]. Acta Aerodynamica Sinica, 2007, 28(2):281-286(in Chinese)
[8] Jameson A. Optimum Aerodynamic Design Using CFD and Control Theory[R]. AIAA-1995-1729
[9] Reuther J, Jameson A, Farmer J, et al. Aerodynamic Shape Optimization of Complex Aircraft Configurations via an Adjoint Method[R]. AIAA-1996-0094
[10] Sederberg T W, Parry S R. Free-Form Deformation of Solid Geometric Models[J]. Computer Graphics, 1986, 20(4):151-160
[11] Rech J R, Leyman C S L. A Case Study by Aerospatiale and British Aerospace on the Concorde[M]. American Institute of Aeronautics and Astronautics, 1997
[12] Saad Y, Schultz M H. GMRES:A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Sytems[J]. SIAM Journal on Scientific and Statistical Computing, 1986, 7(3):856-869
[13] Luke E, Collins E, Blades E. A Fast Mesh Deformation Method Using Explicit Interpolation[J]. Journal of Computational Physics, 2012, 231(2):586-601
[14] Laura Uyttersprot. Inverse Distance Weighting Mesh Deformation A Robust and Efficient Method for Unstructured Meshes[D]. Deltt, TU Delft 2014
[15] Nocedal J, Wright S J. Numerical Optimization[M]. New York, Springer, 1999:526-572
[16] Lovely D, Haimes R. Shock Detection from Computational Fluid Dynamics Results[C]//14th Computational Fluid Dynamics Conference, 1999:3285
[17] Paparone L, Tognaccini R. Computational Fluid Dynamics-Based Drag Prediction and Decomposition[J]. AIAA Journal, 2003, 41(9):1647-1657
相关文献:
1.夏露, 张阳, 孙腾腾.基于寄生模型的粒子群算法在气动优化中的应用[J]. 西北工业大学学报, 2015,33(2): 178-184
2.李占科, 张旭, 冯晓强, 关晓辉.双向飞翼超声速客机激波阻力和声爆研究[J]. 西北工业大学学报, 2014,32(4): 517-522