论文:2017,Vol:35,Issue(5):813-820
引用本文:
刘江, 郑隆乾, 白俊强, 沈广琛, 刘睿. 扰流板下偏对增升装置气动性能的影响及流动机理研究[J]. 西北工业大学学报
Liu Jiang, Zheng Longqian, Bai Junqiang, Shen Guangchen, Liu Rui. Study on Flow Mechanism and Aerodynamic Characteristic of High-Lift Devices with Drooped Spoiler[J]. Northwestern polytechnical university

扰流板下偏对增升装置气动性能的影响及流动机理研究
刘江1, 郑隆乾2, 白俊强1, 沈广琛1, 刘睿1
1. 西北工业大学 航空学院, 陕西 西安 710072;
2. 上海飞机设计研究院, 上海 200232
摘要:
采用计算流体力学方法,针对有、无扰流板下偏的二维和三维增升装置进行数值模拟,研究了扰流板下偏对着陆构型气动性能的影响及其流动机理。结果表明:相比于初始构型,扰流板下偏且保持缝道参数不变时,可以改善着陆构型的气动性能,线性段在相同迎角下的升力系数明显增大,最大升力系数也增大;当扰流板下偏角度增大到10°时,线性段升力系数上移0.2左右,最大升力系数增大了约4.2%。流动机理分析表明:一方面,扰流板下偏可以增大主翼的弯度和环量,造成对缝翼的上洗作用以及襟翼的下洗作用增强,结果使主翼和缝翼的升力增大,襟翼的升力减小,最终体现在总的升力增大;另一方面,扰流板下偏,有利于增强缝道射流的柯恩达效应,改善襟翼上表面附面层的速度型,延缓了分离区的出现,对襟翼升力的减小具有一定的抑制作用。
关键词:    扰流板下偏    CFD    增升装置    流动机理    气动性能   
Study on Flow Mechanism and Aerodynamic Characteristic of High-Lift Devices with Drooped Spoiler
Liu Jiang1, Zheng Longqian2, Bai Junqiang1, Shen Guangchen1, Liu Rui1
1. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
2. Shanghai Aircraft Design Institute, Shanghai 200232, China
Abstract:
Taking advantage of computational fluid dynamics, the simulation of two-dimensional and three-dimensional high-lift devices with deflection of spoiler or not was done.The flow mechanism and aerodynamic characteristic of high-lift devices landing configuration with drooped spoiler were studied. The result indicated that the aerodynamic performance of the landing configuration can be improved when the spoiler deflected and the parameters of the gap and overlap were kept constant compared with the initial configuration, the lift coefficient of the linear section at the same angle of attack significantly increased, and the maximum lift coefficient also increased; When the spoiler deflection angle increased to 10°, the linear section of the lift coefficient moved up about 0.2 and the maximum lift coefficient increased by about 4.2%. The analysis of the flow mechanism showed that:on the one hand, the camber and circulation of the main wing can be enhanced by the deflection of spoiler, and the washing effect on the slat and the flushing effect on the flap were enhanced, as a result,the lift of main wing and slat increased and the lift of flap decreased,which was reflected in the increase of the total lift; on the other hand, deflection of spoiler is helpful to enhance the Coanda effect of the slotted jet and improve the speed of the upper surface of the flap, resulting in delaying the emergence of the separation zone and restraining the decrease of the flap lift.
Key words:    deflection of spoiler    CFD    high-lift devices    flow mechanism    aerodynamic characteristic    angle of attack    drag coefficient    flow fields    lift drag ratio    Mach number    turbulence models   
收稿日期: 2017-03-01     修回日期:
DOI:
基金项目: 国家"973"计划(2014CB744804)资助
通讯作者:     Email:
作者简介: 刘江(1994-),西北工业大学硕士研究生,主要从事飞行器气动设计研究。
相关功能
PDF(2732KB) Free
打印本文
把本文推荐给朋友
作者相关文章
刘江  在本刊中的所有文章
郑隆乾  在本刊中的所有文章
白俊强  在本刊中的所有文章
沈广琛  在本刊中的所有文章
刘睿  在本刊中的所有文章

参考文献:
[1] Morris C, Sheahan J, Dykman J, et al. Control System Design for a Variable Camber Continuous Trailing Edge Flap System on an Elastic Wing[C]//AIAA/ASME/ASCE/AHS/SC Structures, Structural Dynamics, and Materials Conference, 2013
[2] Nakayama H, Kim H J, Matsushima K, et al. Aerodynamic Optimization of Multi-Element Airfoil[C]//AIAA Aerospace Sciences Meeting and Exhibit, 2006
[3] Yokokawa Y, Murayama M, Ito T, et al. Experiment and CFD of a High-Lift Configuration Civil Transport Aircraft Model[C]//AIAA Aerodynamic Measurement Technology and Ground Testing Conference, 2006
[4] Wang X L, Wang F X, Li Y L. Aerodynamic Characteristics of High-Lift Devices with Downward Deflection of Spoiler[J]. Journal of Aircraft, 2015, 48(2):730-735
[5] 徐琳, 田云, 刘沛清,等. 大型飞机后缘铰链襟翼与扰流板下偏联合主动控制的二维绕流数值研究[J]. 民用飞机设计与研究, 2014, 112(1):52-57 Xu Lin,Tian Yun, Liu Peiqing, et al. 2D Numerical Study Based on Active Control of Trailing Edge High Lift Devices with Downward Deflection of Spoiler for Large Aircraft[J]. Civil Aircraft Design and Research, 2014, 112(1):52-57(in Chinese)
[6] Casper M, Scholz P. Active Flow Control on a Two Element High-Lift Airfoil with Drooped Spoiler[C]//AIAA Applied Aerodynamics Conference, 2013
[7] 沈广琛, 白俊强, 刘南,等. 新型机翼后缘变弯运动机构仿真及其气动影响研究[J]. 西北工业大学学报, 2016, 34(4):578-586 Shen Guangchen, Bai Junqiang, Liu Nan, et al. Mechanical Simulation and Aerodynamic Analysis on a New Type of Wing Trailing Edge Variable Camber[J]. Journal of Northwestern Polytechnical University, 2016, 34(4):578-586(in Chinese)
[8] Rumsey C L, Ying S X. Prediction of High Lift:Review of Present Cfd Capability[J]. Progress in Aerospace Sciences, 2002, 38(2):145-180
[9] Menter F R. Zonal Two-Equation K-W Turbulence Model for Aerodynamic Flows[R]. AIAA-1933-2906
[10] Catalano P, Amato M. An Evaluation of RANS Turbulence Modelling for Aerodynamic Applications[J]. Aerospace Science & Technology, 2003, 7(7):493-509
[11] Eliasson P, Catalano P, Pape M C L, et al. Improved CFD Predictions for High Lift Flows in the European Project EUROLIFTⅡ[C]//AIAA Applied Aerodynamics Conference, 2007
[12] Von H G, Schade N, Der J W B V, et al. CFD-Prediction of Maximum-Lift-Effects on Realistic High-Lift-Commercial-Aircraft-Configurations within the European Project EUROLIFTⅡ[C]//AIAA Applied Aerodynamics Conference, 2007
[13] Smith A M O. High-Lift Aerodynamic[J]. Journal of Aircraft, 1975, 12(6):501-530
[14] 朱自强, 吴宗成. 环量控制技术研究[J]. 航空学报, 2016, 37(2):411-428 Zhu Ziqiang, Wu Zongcheng. Study on the Circulation Control Technology[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(2):411-428(in Chinese)
相关文献:
1.王科雷, 周洲, 甘文彪, 许晓平.太阳能无人机低雷诺数翼型气动特性研究[J]. 西北工业大学学报, 2014,32(2): 163-168
2.白俊强, 辛亮, 刘南, 华俊, 董建鸿, 雷武涛, 张晓亮.分布式零质量射流控制增升装置分离的数值模拟[J]. 西北工业大学学报, 2014,32(2): 188-194