论文:2016,Vol:34,Issue(5):747-753
引用本文:
许军, 马晓平. 飞翼无人机静气弹参数分析及操纵效率计算[J]. 西北工业大学学报
Xu Jun, Ma Xiaoping. Flying Wing UAV Static Aeroelastic Parameter Analysis and Control Efficiency Calculation[J]. Northwestern polytechnical university

飞翼无人机静气弹参数分析及操纵效率计算
许军1,2, 马晓平3
1. 西北工业大学 航空学院, 陕西 西安 710072;
2. 中国电子科技集团公司第三十八研究所 浮空平台部, 安徽 合肥 230088;
3. 西北工业大学 无人机所, 陕西 西安 710065
摘要:
耦合流体控制方程与结构动力学方程求解飞翼式无人机的静气动弹性参数响应及不同舵面的操纵效率。首先通过气动结构松耦合技术研究了飞翼无人机静气动弹性响应,对比分析刚性与弹性气动特,分析高度、马赫数、迎角及侧滑角对静气动弹性的影响;其次研究单一舵面偏转与组合舵面偏转的静气弹性,并分析结构几何非线性对静气动弹性的影响;然后分析阻力方向舵开裂角对静气弹的影响;最后计算不同马赫数不同舵面的操纵效率。研究表明迎角增大位移幅值也增大,不同高度位移响应频率形式是一样的,侧滑角对无人机半模静气动弹性响应并没有影响;开裂角增大位移幅值减小,且振荡收敛时间越短;方向舵操纵效率与组合舵面操纵效率相比差异较小,组合舵面操纵效率与单一舵面相比较高,不同组合舵面操纵效率比较接近。
关键词:    飞翼无人机    静气动弹性    CFD/CSD    操纵效率    阻力方向舵    开裂角    弹性变形   
Flying Wing UAV Static Aeroelastic Parameter Analysis and Control Efficiency Calculation
Xu Jun1,2, Ma Xiaoping3
1. College of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
2. Department of Aerostat Platform, No. 38 Research Institute of CETC, Hefei 230088, China;
3. UAV Research Institute, Northwestern Polytechnical University, Xi'an 710065, China
Abstract:
The flying wing UAV static aeroelastic parameters responses and different rudders control efficiency, based on the fluid control equation and structural dynamics equation coupling model, were solved. Firstly the flying wing UAV static aeroelastic responses based on the aerodynamic structural loosely coupling method were studied, the rigid and elastic aeordynamic characteristic were analysis, the effect of height, Mach numbers, attack angle, sideslip angle on the static responses were also analysis. Secondly the single rudder and combination rudders deflection static aeroelastic were given, and the linear and nonlinear on the static aeroelastic responses were also studied. And then effect of rudder crack initiation angles on the static aeroelastic were given; Finally different rudders control efficiency at different Mach numbers were calculated. The research results showed that:(1) the displacement amplitude increased as the attack angle increased, the displacement response frequency was the same at different heights, and the sideslip angle had no effect on the UAV semi model static aeroelastic responses; (2) the displacement amplitude decreased as the cracking angle increased, and the oscillation convergence time was shorter; (3) the rudder control efficiency were closed to the combination rudders control efficiency, which had higher control efficiency compared with the single rudder, and the different rudders control efficiency were almost the same.
Key words:    flying wing UAV    static aeroelasticity    CFD/CSD    control efficiency    drag rudder    crack initiation angle    elastic deformation   
收稿日期: 2016-03-17     修回日期:
DOI:
基金项目: 陕西省自然科学基金(2013JM015)资助
通讯作者:     Email:
作者简介: 许军(1987-),西北工业大学工程师,主要从事无人机总体及气动弹性的研究。
相关功能
PDF(1855KB) Free
打印本文
把本文推荐给朋友
作者相关文章
许军  在本刊中的所有文章
马晓平  在本刊中的所有文章

参考文献:
[1] 杨佑绪, 吴志刚, 杨超. 飞翼结构构型气动弹性优化设计方法[J]. 航空学报, 2013, 43(12):2748-275 Yang Youxu, Wu Zhigang, Yang Chao. An Aeroelastic Optimization Design Approach for Structural Configuration of Flying Wings[J]. Acta Aeronautica et Astronautica Sinica, 2013, 43(12):2748-2756(in Chinese)
[2] Xu Jun, Ma Xiaoping. Transonic Rudder Buzz on Tailless Flying Wing UAV[J]. Transactions of Nanjing University of Aeronautics & Astronautics, 2015, 32(1):61-69
[3] 许军, 马晓平. 飞翼无人机嗡鸣气动弹性响应分析[J]. 西北工业大学学报, 2015, 33(4):588-595 Xu Jun, Ma Xiaoping. Buzz Aeroelastic Responses Analysis for a Flying Wing UAV[J]. Journal of Northwestern Polytechnical University, 2015, 33(4):588-595(in Chinese)
[4] 安效民, 徐敏, 陈士橹. 一种新的界面映射推进方法及其在气动弹性力学中的应用[J]. 宇航学报, 2009, 29(5):1472-1479 An Xiaomin, Xu Min, Chen Shilu. A New Interface Mapping and Marching Method for Aeroelasticity[J]. Journal of Astronautics, 2009, 29(5):1472-1479(in Chinese)
[5] Huo Shihui, Wang Funsheng, Yan Wuzhu, Yue Zhufeng. Layered Elastic Solid Method for the Generating of Unstructured Dynamic Mesh[J]. Finite Elements in Analysis and Design, 2010, 46(10):949-955
[6] 刘学强, 李青, 蔡建忠, 等. 一种新的动网格方法及应用[J]. 航空学报, 2008, 29(4):817-822 Liu Xueqiang, Li Qing, Chai Jianzhong, et al. A New Dynamic Grid Algrithm and Its Application[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(4):817-822(in Chinese)
[7] 杨国伟, 郑冠男. 基于静气动弹性效应的飞机型架外形修正方法研究[J]. 航空工程进展, 2011, 2(2):143-150 Yang Guowei, Zheng Guannan. Aircraft Jig Shape Correction Method Based on Static Aeroelastic Analyes[J]. Advances in Aeronautical Science and Engineering, 2011,2(2):143-150(in Chinese)
[8] 王伟, 周洲, 祝小平, 王睿. 考虑几何非线性效应的大柔性太阳能无人机静气动弹性分析[J]. 西北工业大学学报, 2014, 32(4):499-504 Wang Wei, Zhou Zhou, Zhu Xiaoping, Wang Rui. Static Aeroelastic Characteristics Analysis of a Very Flexible Solar Powered UAV with Geometrical Nonlinear Effect Considered[J]. Journal of Northwestern Polytechnical University, 2014, 32(4):499-504(in Chinese)
[9] 邵珂, 万志强, 杨超. 基于试验气动力的弹性飞机舵面效率分析[J]. 航空学报, 2009, 30(9):1612-1617 Shao Ke, Wan Zhiqiang, Yang Chao. Control Surfaces Efficiency Analysis of Flexible Aircraft Based on Experimental Aerodynamic Forces[J]. Acta Aeronautica et Astronautica Sinica, 2009,30(9):1612-1617(in Chinese)
[10] Zhang Weiwei, Ye Zhengyin. Effect of Control Surface on Airfoil Flutter in Transonic Flow[J]. Acta Astronautic, 2010, 66(7/8):999-1007
[11] Cavagna L, Ricci S, Scotti A. Active Aeroelastic Control over a Four Control Surface Wing Model Aerospace[J]. Science and Technology, 2009, 13(7):374-382
[12] 杨超, 肖志鹏, 万志强. 多控制面飞行器结构与配平鲁棒气动弹性优化方法[J]. 航空学报, 2011, 31(1):75-82 Yang Chao, Xiao Zhipeng, Wan Zhiqiang. A Robust Aeroelastic Optimization Method of Structure and Trim for Air Vehicle with Multiple Control Surfaces[J]. Acta Aeronautica et Astronautica Sinica, 2011,32(1):75-82(in Chinese)
相关文献:
1.许军, 马晓平.飞翼无人机嗡鸣气动弹性响应分析[J]. 西北工业大学学报, 2015,33(4): 588-595