论文:2016,Vol:34,Issue(1):183-187
引用本文:
韦海浪, 李智鹏. 机械合金化二元Mo-Cr体系的研究[J]. 西北工业大学学报
Wei Hailang, Li Zhipeng. Researching Mechanical Alloying of Immiscible Mo-Cr System[J]. Northwestern polytechnical university

机械合金化二元Mo-Cr体系的研究
韦海浪, 李智鹏
西北工业大学, 陕西 西安 710072
摘要:
利用高能棒磨机,对Mo-Cr二元不互溶体系进行机械合金化,通过改变棒料比、棒磨时间以及棒磨罐填充比例,探索形成Cr(Mo)固溶体的条件。研究发现,Mo:Cr=1:1(wt%)配比的粉末,在批料40 g,棒料比60:1,棒磨时间16 h棒磨条件下可获得完全固溶的Cr(Mo)超饱和固溶体;对获得的Cr(Mo)固溶体粉末进行物相、形貌以及热稳定性等分析,探索机械合金化棒磨条件下,二元不互溶Mo-Cr体系的固溶合金化过程。
关键词:    不互溶Mo-Cr体系    高能棒磨    机械合金化    Cr(Mo)固溶体   
Researching Mechanical Alloying of Immiscible Mo-Cr System
Wei Hailang, Li Zhipeng
Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
With the method of high-energy rod mill, the Cr (Mo) solid solution was prepared and by changing the ratio of the material, the grinding time and the filling ratio of rod mill, the conditions for forming Cr (Mo) solid solution were explored. It shows that when the batch is 40g, bar ratio is 60:1, rod mill time is 16 h, with the powder of Mo:Cr=1:1 (wt%) ratio, we can get the completely soluble Cr (Mo)-saturated solid solution. And we also analyzed the phase, morphology and thermal stability of Cr (Mo) solid solution powders, and explored the process of the solid solution alloying of the immiscible Mo-Cr system with the condition of mechanical alloying.
Key words:    argon    chromium powder metallurgy    computer simulation    design of experiments    diffential thermal analysis    mechanical alloying    malybdenum powder metallargy    solid solutions    thermodynamic stability    X ray diffraction    high energy bar mill    immiscible Mo-Cr system    Mo-Cr solid solution   
收稿日期: 2015-09-01     修回日期:
DOI:
基金项目: 渭南市环境保护局专项基金(2015KY003)资助
通讯作者:     Email:
作者简介: 韦海浪(1971-),西北工业大学工程师,主要从事环境工程研究。
相关功能
PDF(2987KB) Free
打印本文
把本文推荐给朋友
作者相关文章
韦海浪  在本刊中的所有文章
李智鹏  在本刊中的所有文章

参考文献:
[1] Benjamin J S. Dispersion Strengthened Superalloys by Mechanical Alloying[J]. Metallurgical Transactions, 1970, 8(1): 2943-2946
[2] Morris M A, Morris D G. Microstructural Refinement and Associated Strength of Copper Alloys Obtained by Mechanical Alloying[J]. Materials Science and Engineering A, 1989, 111(89): 115-127
[3] Koch C C, Scattergood R O, Youssef K M, et al. Nanostructured Materials by Mechanical Alloying: New Results on Property Enhancement[J]. Journal of Materials Science, 2010, 45(17): 4725-4732
[4] Rochman N T, Kuramoto S, Fujimoto R, et al. Effect of Milling Speed on an Fe-C-Mn System Alloy Prepared by Mechanical Alloying[J]. Journal of Materials Processing Technology, 2003, 138(1-3): 41-46
[5] Rafiei M, Enayati M H, Karimzadeh F. Thermodynamic Analysis of Solid Solution Formation in the Nanocrystalline Fe-Ti-Al Ternary System during Mechanical Alloying[J]. Journal of Chemical Thermodynamics, 2013, 59: 243-249
[6] Suryanarayana C, Chen G H, Froes F H S. Milling Maps for Phase Identification during Mechanical Alloying[J]. Scripta Metallurgica et Materialia, 1992, 26(11): 1727-1732
[7] Gonzalez G, Dangelo L, Ochoa J, et al. Study of the Synthesis and Sintering of Nanophase Fe73Al27 Obtained by Mechanical Alloying[J]. Metastable, Mechanically Alloyed and Nanocrystalline Materials, 2001, 360(3): 349-354
[8] Paz J C, Zamora L E, Alcazar G A P, et al. Study on Fe-59.5 Al-25.5 Si-15 System Obtained by Milling[J]. Revista Mexicana de Fisica, 2012, 58(2): 131-133
[9] Qin Y, Chen L, Shen H. In-situ X-Ray Diffraction Examination of Nanocrystalline Ag37Cu63 Powders Synthesized by Mechanical Alloying[J]. Journal of Alloys and Compounds, 1997, 256(1/2): 230-233
[10] Yamada K, Koch C C. The Influence of Mill Energy and Temperature on the Structure of the Tini Intermetallic after Mechanical Attrition[J]. Journal of Materials Research, 1993, 8(6): 1317-1326
[11] Figueroa I A, Baez-Pimiento S, Plummer J D, et al. A Detailed Study of Metallic Glass Formation in Copper-Hafnium-Titanium Alloys[J]. Acta Metallurgica Sinica-English Letters, 2012, 25(6): 409-419
[12] Mostaan H, Karimzadeh F, Abbasi M H. Thermodynamic Analysis of Nanocrystalline and Amorphous Phase for Mation in Nb-Al System during Mechanical Alloying[J]. Powder Metallurgy, 2012, 55(2): 142-147