论文:2015,Vol:33,Issue(6):956-961
引用本文:
张玲玉, 徐颖强, 许璠, 秦宇飞, 陈仙亮. 含齿根裂纹的非标齿轮啮合刚度改进算法及动态响应分析[J]. 西北工业大学学报
Zhang Linyu, Xu Yingqiang, Xu Fan, Qin Yufei, Chen Xianliang. Improved Algorithm for Calculating Mesh Stiffness of Non-Standard Gear with Root Crack and Its Dynamic Responce Analysis[J]. Northwestern polytechnical university

含齿根裂纹的非标齿轮啮合刚度改进算法及动态响应分析
张玲玉, 徐颖强, 许璠, 秦宇飞, 陈仙亮
西北工业大学 机电学院, 陕西 西安 710072
摘要:
时变啮合刚度是齿轮系统动力学模型的参数激励,当齿轮出现齿根裂纹时,啮合刚度变化引起的动态响应特征是实现齿轮裂纹故障诊断的重要依据。以非标齿轮为研究对象,针对齿根裂纹故障对其时变啮合刚度的影响,建立考虑基圆与齿根圆不重合的变截面悬臂梁模型,提出利用改进势能法求解齿轮啮合刚度的计算模型,与原势能法和ISO 6336-1-2006进行对比分析,并计算齿顶高系数和顶隙系数改变时不同裂纹尺寸的轮齿刚度和齿轮时变啮合刚度;建立非标齿轮传动系统六自由度动力学分析模型,利用4-5阶Runge-Kutta数值法求解故障系统的动态响应。仿真结果表明改进势能法显著提高了非标齿轮时变啮合刚度的求解精度。齿根裂纹的存在使得非标齿轮综合啮合刚度明显减小,系统时域信号中存在周期性冲击响应,频域中出现调制边频带结构,这些均为齿轮系统故障诊断提供了理论依据。
关键词:    齿根裂纹    时变啮合刚度    改进势能法    动力学分析   
Improved Algorithm for Calculating Mesh Stiffness of Non-Standard Gear with Root Crack and Its Dynamic Responce Analysis
Zhang Linyu, Xu Yingqiang, Xu Fan, Qin Yufei, Chen Xianliang
Department of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, china
Abstract:
When a tooth crack failure occurs, the dynamic response caused by time-varying mesh stiffness changes plays a significant role in monitoring the operating conditions of a gear system and diagnosing its fault. We study a non-standard gear and the effect of tooth crack fault on the time-varying mesh stiffness. We establish the non-uniform cantilever beam model in which the misalignment between base circle and root circle is taken into account. The three gear mesh stiffneses calculated with the improved algorithm, the existing potential energy method and the ISO 6336-1-2006 Standard are compared to verify the improved potential energy method.The tooth stiffness and time-varying gear mesh stiffness with different crack sizes are calculated when the gear addendum coefficient and the tip clearance coefficient change. The 6-degeee-of-freedom dynamics analysis model of a non-standard gear transmission system is established, and the Runge-Kutta numerical method is used to analyze the dynamic response. The simulation results show that when the cracked tooth comes in contact, mesh stiffness decreases greatly and that the dynamic response presents a periodically impulse amplitude. Besides, modulation sidebands appear in the frequency domain; these results provide a theoretical basis for diagnosing the fault of a gear system.
Key words:    calculations    computer simulation    dynamics    degrees of freedom (mechanics)    dynamic response    errors    failure analysis    friction    gears    mean square error    monitoring    Runge-Kutta methods    stiffness    dynamics analysis    improved potential energy method    root crack    time-varying mesh stiffness   
收稿日期: 2015-04-01     修回日期:
DOI:
基金项目: 国家自然科学基金(11072196)资助
通讯作者:     Email:
作者简介: 张玲玉(1990—), 女,西北工业大学博士研究生,主要从事结构疲劳强度与可靠性分析研究。
相关功能
PDF(1664KB) Free
打印本文
把本文推荐给朋友
作者相关文章
张玲玉  在本刊中的所有文章
徐颖强  在本刊中的所有文章
许璠  在本刊中的所有文章
秦宇飞  在本刊中的所有文章
陈仙亮  在本刊中的所有文章

参考文献:
[1] 徐颖强,朱燃燃,于东洋,等. 大顶隙长齿齿轮高弯曲承载能力关键技术研究[J]. 机械强度,2014,36(5):803-808 Xu Yingqiang, Zhu Ranran, Yu Dongyang, et al. Key Technology Research of Long Tooth and Large Bottom Clearance Gear with High Bending Bearing Capacity[J]. Journal of Mechanical Strength, 2014, 36(5): 803-808 (in Chinese)
[2] 王龙宝. 齿轮刚度计算及其有限元分析[D]. 南京:江苏大学,2007 Wang Longbao. Calculation and Finite Analysis of Gears Mesh Stiffness[D]. Nanjing: Jiangsu University, 2007 (in Chinese)
[3] 李亚鹏,孙伟,魏静,等. 齿轮时变啮合刚度改进算法[J]. 机械传动,2010, 35(5):22-26 Li Yapeng, Sun Wei, Wei Jing, et al. Study on the Improved Algorithm of the Time-Varying Meshing Stiffness of Gear[J]. Journal of Mechanical Transmission, 2010, 35(5):22-26 (in Chinese)
[4] Yang D, Lin J. Hertzian Damping, Tooth Friction and Bending Elasticity in Gear Lmpact Dynamics[J]. ASME J Mech Auto Des,1987, 109(2):189-196
[5] Tian X. Dynamic Simulation for System Response of Gearbox Including Localized Gear Faults[D]. University of Alberta, Edmonton, Alberta, Canada, 2004
[6] Pandya Y, Parey. A Crack Behavior in a High Contact Ration Spur Gear Tooth and Its Effect on Mesh Stiffness[J]. Engineering Failure Analysis, 2013(34): 69-78
[7] Wan Zhiguo, Cao Hongrui, Zi Yanyang, et al. An Improved Time-Varying Mesh Stiffness Algorithm and Dynamic Modeling of Gear-Rotor System with Tooth Root Crack[J]. Engineering Failure Analysis, 2014, 42: 157-177
[8] Mohammed O D, Rantatalo M, Aidanpaa J O, et al. Vibration Signal Analysis for Gear Fault Diagnosis with Various Crack Progression Scenarios[J]. Mechanical Systems and Signal Processing, 2013, 41:176-195
[9] 崔玲丽,康晨辉,高立新,等. 含故障齿轮的动力学模型及振动响应研究[J]. 振动与冲击,2010, 29(Suppl 1): 40-42 Cui Lingli, Kang Chenhui, Gao Lixin, et al. Research on the Vibration Response and Dynamic Model of a Spur Gear System with Fault[J]. Journal of Vibration and Shock, 2010, 29(Suppl 1): 40-42 (in Chinese)
[10] Wu Siyan, Zuo Mingjian,Parey Anand. Simulation of Spur Gear Dynamics and Estimation of Fault Growth [J]. Journal of Sound and Vibration, 2008, 317(3): 608-624