论文:2013,Vol:31,Issue(6):871-877
引用本文:
李斌, 董万元, 王小兵. 一种气动/电磁联合作动的主动隔振器设计与仿真[J]. 西北工业大学
Li Bin, Dong Wanyuan, Wang Xiaobin. Design and Simulation of an Active Vibration Isolator Based on Pneumatic-Electromagnetic Hybrid Driving[J]. Northwestern polytechnical university

一种气动/电磁联合作动的主动隔振器设计与仿真
李斌, 董万元, 王小兵
西北工业大学 航空学院, 陕西 西安 710072
摘要:
大型机载光学系统要求有非常高的光束指向控制精度,这将给机载隔振平台的设计提出若干新的挑战。从分析飞机结构振动特点出发,提出采用气动与电磁驱动联合作动的方法,为飞机平台设计一种适合大型机载光学系统安装的主动隔振器。单个隔振器的承载能力为150~190 kg,垂向隔振频带范围为1~100 Hz,最大输出控制力为560 N。文中阐明了气动/电磁联合作动的运行机理,并对隔振器进行了结构详细设计;然后对隔振器进行数学模型简化,建立隔振器的动力学方程;最后利用PID控制算法和LQR控制算法,对隔振器进行Matlab/Simulink数值仿真。仿真结果表明所设计的隔振器隔振性能优异,在垂向宽带(1~100 Hz)大振幅随机扰动作用下,可以将有效载荷的振动位移控制到±10μm量级,能够满足光学设备的安装要求。PID方法和LQR方法的控制效果对比表明,对于单个隔振器系统,PID方法较LQR方法易于实现,并且控制效果也略优。
关键词:    空气弹簧    电磁驱动    PID(proportion-integral-derivative)    LQR(linear quadratic regulator)    机载光学平台   
Design and Simulation of an Active Vibration Isolator Based on Pneumatic-Electromagnetic Hybrid Driving
Li Bin, Dong Wanyuan, Wang Xiaobin
College of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
Large airborne optical systems require very high beam pointing control accuracy, which will put forward some new challenges for the design of an airborne isolation platform.We analyze the characteristics of aircraft struc-tural vibration, and propose to develop a pneumatic and electromagnetic hybrid driving isolator.The isolator uses an adjustable pneumatic air spring with an external air container to suspend the payload, and a coaxial electromagnetic actuator is integrated with the output rod of the isolator, which provides a broadband active control force for the pay-load.The preliminarily determined carrying capacity is 150~190 kg and the isolation frequency range is from 1 Hz to 100 Hz.This paper firstly describes the principles of pneumatic/electromagnetic hybrid driving and presents a structural layout of the isolator.Then it simplifies the system, establishes the physical model, and derives the dy-namic equations of the isolator.Finally, the Matlab/Simulink numerical simulations of the isolator are conducted to research respectively the feasibility and efficiency of PID control algorithm and LQR control algorithms.The simula-tion results and their analysis show preliminarily that:(1) the two active control algorithms are efficient, and the payload′s vibration displacement amplitude can be reduced to ±10μm level under a wide frequency band (1~100 Hz) random vertical disturbance;(2) this vibration reduced performance of the isolator can meet the installation requirements of large airborne optical equipment.The comparison between the PID and LQR control methods shows that the vibration reduced performance of the PID method is slightly better than that of the LQR method for a single isolator system;besides, the PID method is easy to implement.
Key words:    actuators    algorithms    computer simulation    design    dynamics    Laplace transforms    mathematical models    MATLAB    Monte Carlo methods    optical systems    power spectral density    transfer functions    vibration control    air spring    airborne optical platform    electromagnet actuator    LQR    PID   
收稿日期: 2013-03-19     修回日期:
DOI:
基金项目: 国家自然科学基金(11172238)资助
通讯作者:     Email:
作者简介: 李斌(1975-),西北工业大学教授,主要从事飞行器结构动力学与控制研究。
相关功能
PDF(1009KB) Free
打印本文
把本文推荐给朋友
作者相关文章
李斌  在本刊中的所有文章
董万元  在本刊中的所有文章
王小兵  在本刊中的所有文章

参考文献:
[1] David A Kienhol. Active Alignment and Vibration Control System for Large Airborne Optical System. SPIE Smart Structures and Materials Conference, 2000, 1-9
[2] 崔龙, 黄海. 大行程 Hexapod 平台及其隔振实验. 北京航空航天大学学报, 2010, 6(36): 671-675 Cui Long, Huang Hai. Large-Stroke Hexapod Platform and its Vibration Isolation Test. Journal of Beijing University of Aeronautics and Astronautics, 2010, 6(36): 671-675 (in Chinese)
[3] David A Kienhol. Simulation of the Zero-Gravity Environment for Dynamic Testing of Structures. The 19 th Space Simulation Conference, 1996, 28-31
[4] 陶永华. 新型 PID 控制及其应用. 北京: 机械工业出版社, 2002, 11-60 Tao Yonghua. New PID Control and Applications. Beijing: China Machine Press, 2002, 11-60 (in Chinese)
[5] 张春良, 梅德庆, 陈子辰. 振动主动控制及应用. 哈尔滨: 哈尔滨工业大学出版社, 2010, 101-135 Zhang Chunliang, Mei Deqing, Chen Zichen. Vibration Active Control and Application. Harbin: Harbin Institute of Technology Press, 2010, 101-135 (in Chinese)
[6] 欧进萍. 结构振动控制 —主动、 半主动和智能控制. 北京: 科学出版社, 2003, 78-121 Ou Jinping. Structural Vibration Control —Active、 Semi-Active and Intelligent Control. China Science Press, 2003, 78-121 (in Chinese)
[7] Yang Z C, Xu Y L, Chen J, et al. Hybrid Platform for Vibration Control of High-Tech Equipment in Building Subject to Ground Motion Part 2: Analysis. Earthquake Engng Struct Dyn, 2003, 32: 1201-1215
[9] 张文娜. 电控空气悬架 PID 控制系统设计与实验研究: [硕士学位论文]. 江苏: 江苏大学, 2006 Zhang Wenna. PID Control System Design of Electronic Air Spring Suspension and Experiment Research. Master Degree Dissertation, Jiangsu University, 2006 (in Chinese)