论文:2014,Vol:32,Issue(5):675-681
引用本文:
张波, 祝小平, 周洲, 徐明兴. 基于纵向直接力控制的飞翼布局无人机紊流减缓[J]. 西北工业大学
Zhang Bo, Zhu Xiaoping, Zhou Zhou, Xu Mingxing. Turbulence Alleviation of Unmanned Aerial Vehicle with Fly Wing Configuration Based on Longitudinal Direct Force Control[J]. Northwestern polytechnical university

基于纵向直接力控制的飞翼布局无人机紊流减缓
张波1, 祝小平2, 周洲1, 徐明兴1
1.西北工业人学无人机特种技术重点实验室, 陕西 西安 710072;
2.西北工业人学无人机所, 陕西 西安 710072
摘要:
飞翼布局无人机在大气紊流中飞行会受到较大的紊流载荷,而受限于自身构型和舵面配置,无法采用传统控制方案进行紊流载荷减缓。分析了飞翼布局无人机的舵面气动特性,提出一种多组舵面配合产生纵向直接控制力的垂直紊流减缓方案,并采用自抗扰控制技术设计了非线性控制器,在线估计系统误差和紊流扰动,并进行补偿控制。仿真结果表明:飞翼布局无人机采用直接力控制方案,并加入该非线性控制器后,能显著减缓在大气紊流中飞行中的法向过载,同时保证姿态和航迹稳定。
关键词:    无人机    飞翼布局    直接力控制    紊流减缓    自抗扰控制    非线性控制   
Turbulence Alleviation of Unmanned Aerial Vehicle with Fly Wing Configuration Based on Longitudinal Direct Force Control
Zhang Bo1, Zhu Xiaoping2, Zhou Zhou1, Xu Mingxing1
1. Science and Technology on UAV Laboratory, Northwestern Polytechnical University, Xi'an 710072, China;
2. UAV Research Institute, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
Unmanned aerial vehicle with fly wing configuration can suffer critical loading when flying through at-mospheric turbulence.Restricted to the aerodynamic configuration and control surfaces distribution,traditionalstrategies for gust load alleviation cannot be applied to the fly wing configuration vehicle.Aerodynamic characteris-tics of control surfaces are contrasted and analyzed.According to the visible differences in force coefficient and mo-ment coefficient of the control surfaces,an alleviation strategy is proposed for the unmanned aerial vehicle with flywing configuration.In this strategy ,all control surfaces cooperate in generating longitudinal direct force while keep-ing addition moment trimmed.A nonlinear controller is designed based on active disturbance rejection control tech-niques to compensate for system error and turbulence disturbance by online estimation.Simulation results and theiranalysis show preliminarily that the goad response to atmospheric turbulence is improved after applying the longitu-dinal direct force control strategy and that the nonlinear controller ,and the flight attitude and track can maintainstability besides.
Key words:    unmanned aerial vehicles (UAV)    aerodynamic configurations    angle of attack    angular velocity    computer simulation    control surfaces    controllers    disturbance rejection    errors    estimation    MAT-LAB    nonlinear control systems    turbulence models    wind effects;active disturbance rejection con-trol    atmospheric turbulence alleviation    direct force control    fly wing   
收稿日期: 2014-02-25     修回日期:
DOI:
通讯作者:     Email:
作者简介: 张波(1989-),西北工业大学博士研究生,主要从事飞行器动力学与控制的研究。
相关功能
PDF(378KB) Free
打印本文
把本文推荐给朋友
作者相关文章
张波  在本刊中的所有文章
祝小平  在本刊中的所有文章
周洲  在本刊中的所有文章
徐明兴  在本刊中的所有文章

参考文献:
[1] Sohrab H,Hugh L,Joaquim M. Model-Predictive Gust Load Alleviation Controller for a Highly Flexible Aircraft[J]. Journal ofGuidance,Control,and Dynamics,2012,35(6): 1751-1765
[2] 王睿. 飞翼式高空长航时无人机飞行控制与仿真研究[D]. 西安: 西北工业大学,2008Wang R. Research on Flight Control and Simulation for Flying-Wing High Altitude Long Endurence UAV[D]. Xi'an,North-western Polytechnical University,2008 (in Chinese)
[3] Robert G C,Rafael P,Paul G. Robust Gust Alleviation and Stabilization of Very Flexible Aircraft[J]. AIAA Journal,2013,51(2): 330-339
[4] Jie Z,Sunil L K,Boris M. Experimental Model-Based Aeroelastic Control for Flutter Suppression and Gust-Load Alleviation[J]. Journal of Guidance,Control,and Dynamics,2012,35(5): 1377-1390
[5] 袁刚,李爱军,王长青,等. 多舵面大型民机阵风减缓系统设计[J]. 飞行力学,2011,29(4): 65-67Yuan G,Li A J,Wang C Q,et al. Gust Alleviation Control System Design of Large Civil Aircraft Based on Multiple Control Sur-faces[J]. Flight Dynamics,2011,29(4): 65-67 (in Chinese)
[6] 章卫国,孙逊,王伟,等. -种基于 MIMO 系统动态渐近解耦的阵风减缓方法[J]. 西北工业大学学报,2006,24(1):23-25Zhang W G,Sun X,Wang W,et al. An Improved Gust Alleviation Method[J]. Journal of Northwestern Polytechnical Univer-sity,2006,24(1): 23-25 (in Chinese)
[7] 李卫琪,张平,陈宗基. 基于控制分配方法的阵风减缓控制律设计[J]. 系统仿真学报,2009,20: 247-256Li W Q,Zhang P,Chen Z J. Control Allocation Method Based Gust Alleviation Control Design[J]. Journal of System Simula-tion,2009,20: 247-256 (in Chinese)
[8] 高洁,王立新,周堃. 大展弦比飞翼构型飞机阵风载荷减缓控制[J]. 北京航空航天大学学报,2008,34(9):1076-1079Gao J,Wang L X,Zhou K. Gust Load Alleviation Control of Aircraft with Large Ratio Flying Wing Configuration[J]. Journal ofBeijing University of Aeronautics and Astronautics,2008,34(9): 1076-1079 (in Chinese)
[9] 肖亚伦,金长江. 大气扰动中的飞行原理[M]. 北京: 国防工业出版社,1993: 77-84Xiao Y L,Jin C J. Flight Principles in Atmospheric Disturbance[M]. Beijing,National Defense Industry Press,1993: 77-84(in Chinese)
[10] 韩京清. 自抗扰控制技术[M]. 北京: 国防工业出版社,2008: 255-263Han J Q. Active Disturbance Rejection Control Technique[M]. Beijing,National Defense Industry Press,2008: 255-263 (inChinese)
[11] 赵志良. 非线性自抗扰控制的收敛性[D]. 合肥: 中国科学技术大学,2012Zhao Z L. Convergence of Nonlinear Active Disturbance Rejection Control[D]. Hefei,University of Science and Technology ofChina,2012 (in Chinese)
[12] 熊治国,孙秀霞,胡孟权. 超机动飞行自抗扰控制律设计与仿真[J]. 系统仿真学报,2006,18(8): 2222-2226Xiong Z G,Sun X X,Hu M Q. Active Disturbances Rejection Control Law Design of Aircraft Super-Maneuverable Flight andSimulations[J]. Journal of System Simulation,2006,18(8): 2222-2226 (in Chinese)
[13] 齐乃明,秦昌茂,宋志国. 高超声速飞行器改进自抗扰串级解耦控制器设计[J]. 哈尔滨工业大学学报,2011,43(11):34-38Qi N M,Qin C M,Song Z G. Improved ADRC Cascade Decoupling Controller Design of Hypersonic Vehicle[J]. Journal ofHarbin Institute of Technology,2011,43(11): 34-38 (in Chinese)
[14] Raza S J,Silverthom J T. Use of Pseudo-Inverse for Design of a Reconfigurable Flight Control System[C]∥Proceedings of AIAAGuidance,Navigation,and Control Conference,Snowmass,1985: 349-356
[15] Eberhardt R L,Ward D G. Indirect Adaptive Flight Control System Interactions[J]. International Journal of Robust and Nonlin-ear Control,1999,9(14): 1013-1031
相关文献:
1.王刚, 胡峪, 宋笔锋.利用螺旋桨动力配平的飞翼布局无人机[J]. 西北工业大学, 2014,32(2): 181-187
2.谭健, 周洲, 祝小平, 徐明兴.基于terminal滑模与控制分配的飞翼布局无人机姿态控制[J]. 西北工业大学, 2014,32(4): 505-510