Volume 43 Issue 3
Mar.  2024
Turn off MathJax
Article Contents
XIE Fengyun, DONG Jiankun, FU Yu, LIU Yi, XIAO Qian. Motor Fault Diagnosis Method Based on Migration Learning and CNN[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(3): 513-519. doi: 10.13433/j.cnki.1003-8728.20220196
Citation: XIE Fengyun, DONG Jiankun, FU Yu, LIU Yi, XIAO Qian. Motor Fault Diagnosis Method Based on Migration Learning and CNN[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(3): 513-519. doi: 10.13433/j.cnki.1003-8728.20220196

Motor Fault Diagnosis Method Based on Migration Learning and CNN

doi: 10.13433/j.cnki.1003-8728.20220196
  • Received Date: 2021-10-12
  • Publish Date: 2024-03-25
  • Aiming at the problem that the lack of labeled data will lead to poor training of convolutional neural network (CNN), a motor fault diagnosis method based on the combination of migration learning and CNN is proposed for three-phase asynchronous motor fault diagnosis. Firstly, an experimental platform for motor fault diagnosis is built, the label data of input CNN model is obtained by acceleration sensor, and the pre-trained model is obtained through training. Then, the obtained pre-training model is transferred to the target domain with transfer learning, and a small amount of labeled data in the target domain is cleared for training and fine-tuning parameters, and the CNN parameters are optimized by training the labeled data in the target domain. Finally, a new model with good classification ability for the target domain data is obtained, so as to realize the motor fault diagnosis in the case of scarce labeled data in the target domain. By comparing this method with ordinary CNN, variational modal decomposition (VMD)-support vector machine (SVM), VMD-K nearest neighbor (KNN) and VMD-BP neural network recognition models for validation, the results show that the pattern recognition method of migrating CNN model proposed in this paper has better recognition effect.
  • loading
  • [1]
    符羽. 基于卷积神经网络的三相异步电机故障诊断方法研究[D]. 南昌: 华东交通大学, 2021.

    FU Y. Fault diagnosis of three phase induction motor based on convolution neural network[D]. Nanchang: East China Jiaotong University, 2021. (in Chinese)
    [2]
    郝鹏永. 基于深度信念网络的异步电机典型故障的诊断方法及其实验研究[D]. 秦皇岛: 燕山大学, 2019.

    HAO P Y. Diagnostic method and experimental study of typical faults of asynchronous motor based on deep belief network[D]. Qinghuangdao: Yanshan University, 2019. (in Chinese)
    [3]
    贺珂珂. 基于深度学习理论的电机故障诊断方法研究[D]. 兰州: 兰州理工大学, 2019.

    HE K K. Research on motor fault diagnosis method based on deep learning theory[D]. Lanzhou: Lanzhou University of Technology, 2019. (in Chinese)
    [4]
    HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 3135786): 504-507.

    HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507.
    [5]
    仝钰, 庞新宇, 魏子涵. 基于GADF-CNN的滚动轴承故障诊断方法[J]. 振动与冲击, 2021, 40(5): 247-253.

    TONG Y, PANG X Y, WEI Z H. Fault diagnosis method of rolling bearing based on GADF-CNN[J]. Journal of Vibration and Shock, 2021, 40(5): 247-253. (in Chinese)
    [6]
    丁承君, 冯玉伯, 王曼娜. 基于变分模态分解与深度卷积神经网络的滚动轴承故障诊断[J]. 振动与冲击, 2021, 40(2): 287-296.

    DING C J, FENG Y B, WANG M N. Rolling bearing fault diagnosis using variational mode decomposition and deep convolutional neural network[J]. Journal of Vibration and Shock, 2021, 40(2): 287-296. (in Chinese)
    [7]
    雷亚国, 贾峰, 周昕, 等. 基于深度学习理论的机械装备大数据健康监测方法[J]. 机械工程学报, 2015, 51(21): 49-56. doi: 10.3901/JME.2015.21.049

    LEI Y G, JIA F, ZHOU X, et al. A deep learning-based method for machinery health monitoring with big data[J]. Journal of Mechanical Engineering, 2015, 51(21): 49-56. (in Chinese) doi: 10.3901/JME.2015.21.049
    [8]
    孙文珺, 邵思羽, 严如强. 基于稀疏自动编码深度神经网络的感应电动机故障诊断[J]. 机械工程学报, 2016, 52(9): 65-71. doi: 10.3901/JME.2016.09.065

    SUN W J, SHAO S Y, YAN R Q. Induction motor fault diagnosis based on deep neural network of sparse auto-encoder[J]. Journal of Mechanical Engineering, 2016, 52(9): 65-71. (in Chinese) doi: 10.3901/JME.2016.09.065
    [9]
    王丽华, 谢阳阳, 张永宏, 等. 采用深度学习的异步电机故障诊断方法[J]. 西安交通大学学报, 2017, 51(10): 128-134. doi: 10.7652/xjtuxb201710021

    WANG L H, XIE Y Y, ZHANG Y H, et al. A fault diagnosis method for asynchronous motor using deep learning[J]. Journal of Xi′an Jiaotong University, 2017, 51(10): 128-134. (in Chinese) doi: 10.7652/xjtuxb201710021
    [10]
    陈祝云. 基于深度迁移学习的机械设备智能诊断方法研究[D]. 广州: 华南理工大学, 2020.

    CHEN Z Y. Research on intelligent diagnosis of machinery equipment based on deep transfer learning[D]. Guangzhou: South China University of Technology, 2020. (in Chinese)
    [11]
    陈超, 沈飞, 严如强. 改进LSSVM迁移学习方法的轴承故障诊断[J]. 仪器仪表学报, 2017, 38(1): 33-40. doi: 10.3969/j.issn.0254-3087.2017.01.005

    CHEN C, SHEN F, YAN R Q. Enhanced least squares support vector machine-based transfer learning strategy for bearing fault diagnosis[J]. Chinese Journal of Scientific Instrument, 2017, 38(1): 33-40. (in Chinese) doi: 10.3969/j.issn.0254-3087.2017.01.005
    [12]
    康守强, 胡明武, 王玉静, 等. 基于特征迁移学习的变工况下滚动轴承故障诊断方法[J]. 中国电机工程学报, 2019, 39(3): 764-772. doi: 10.13334/J.0258-8013.PCSEE.180130

    KANG S Q, HU M W, WANG Y J, et al. Fault diagnosis method of a rolling bearing under variable working conditions based on feature transfer learning[J]. Proceedings of the CSEE, 2019, 39(3): 764-772. (in Chinese) doi: 10.13334/J.0258-8013.PCSEE.180130
    [13]
    沈飞, 陈超, 严如强. 奇异值分解与迁移学习在电机故障诊断中的应用[J]. 振动工程学报, 2017, 30(1): 118-126. doi: 10.16385/j.cnki.issn.1004-4523.2017.01.016

    SHEN F, CHEN C, YAN R Q. Application of SVD and transfer learning strategy on motorfault diagnosis[J]. Journal of Vibration Engineering, 2017, 30(1): 118-126. (in Chinese) doi: 10.16385/j.cnki.issn.1004-4523.2017.01.016
    [14]
    朱光磊. 三相笼型异步电机故障时的定子电流特征分析与实验研究[D]. 广州: 华南理工大学, 2018.

    ZHU G L. Study of the current characteristics in three-phase squirrel cage asynchronous motor fault state and experimental verification[D]. Guangzhou: South China University of Technology, 2018. (in Chinese)
    [15]
    高学, 王有旺. 基于CNN和随机弹性形变的相似手写汉字识别[J]. 华南理工大学学报(自然科学版), 2014, 42(1): 72-76.

    GAO X, WANG Y W. Recognition of similar handwritten Chinese characters based on CNN and random elastic deformation[J]. Journal of South China University of Technology (Natural Science Edition), 2014, 42(1): 72-76. (in Chinese)
    [16]
    于洋, 何明, 刘博, 等. 基于TL-LSTM的轴承故障声发射信号识别研究[J]. 仪器仪表学报, 2019, 40(5): 51-59.

    YU Y, HE M, LIU B, et al. Research on acoustic emission signal recognition of bearing fault based on TL-LSTM[J]. Chinese Journal of Scientific Instrument, 2019, 40(5): 51-59. (in Chinese)
    [17]
    YANG Y H, SHI G Q, SHI X. Fault monitoring and classification of rotating machine based on PCA and KNN[C]//2018 Chinese Control and Decision Conference. Shenyang: IEEE, 2018: 1795-1800.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(6)

    Article views (86) PDF downloads(4) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return