Volume 42 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
ZHANG Hongwei, MENG Jianbing, ZHOU Haian, QU Linghui, DONG Xiaojuan, LI Li, GUAN Qingyi, WANG Shuaike. Simulation and Analysis on Micro Pit Array of Titanium Alloy with Hydrophobic Surface by Mask Electrochemical Micromachining[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(1): 106-112. doi: 10.13433/j.cnki.1003-8728.20200616
Citation: ZHANG Hongwei, MENG Jianbing, ZHOU Haian, QU Linghui, DONG Xiaojuan, LI Li, GUAN Qingyi, WANG Shuaike. Simulation and Analysis on Micro Pit Array of Titanium Alloy with Hydrophobic Surface by Mask Electrochemical Micromachining[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(1): 106-112. doi: 10.13433/j.cnki.1003-8728.20200616

Simulation and Analysis on Micro Pit Array of Titanium Alloy with Hydrophobic Surface by Mask Electrochemical Micromachining

doi: 10.13433/j.cnki.1003-8728.20200616
  • Received Date: 2021-04-27
  • Publish Date: 2023-01-25
  • In order to obtain a higher contact angle and improve its hydrophobicity, the micro texture on the surface of dimple array of titanium alloy was machined by using the mask electrolysis technology. Firstly, a model for micro pit array mask electrochemical machining is established and multi physical field coupling simulation is carried out; Secondly, the effect of the mask electrochemical machining parameters on the micro pit array is analyzed, and the solid-liquid contact area ratio of the micro pit array is obtained by means of the wetting theory model; Finally, with the area ratio as the dependent variable, the electrolyte mass fraction, electrolytic voltage and mask size as the independent variables, the orthogonal experiment simulation and range analysis were carried out to obtain the best combination of process parameters. Comparing with the predicted values, the errors of the measured values of cell diameter, spacing, depth, solid-liquid contact area ratio and surface contact angle are less than 8%, which indicates that the micro pit array with a contact angle of about 140° is successfully fabricated without modification of low surface energy materials.
  • loading
  • [1]
    BOIDI G, TERTULIANO I S, PROFITO F J, et al. Effect of laser surface texturing on friction behaviour in elastohydrodynamically lubricated point contacts under different sliding-rolling conditions[J]. Tribology International, 2020, 149: 105613 doi: 10.1016/j.triboint.2019.02.021
    [2]
    SU B B, HUANG L R, HUANG W, et al. Observation on the deformation of dimpled surface in soft-EHL contacts[J]. Tribology International, 2018, 119: 521-530 doi: 10.1016/j.triboint.2017.11.029
    [3]
    ZHANG D Y, GAO F, WEI X, et al. Fabrication of textured composite surface and its tribological properties under starved lubrication and dry sliding conditions[J]. Surface and Coatings Technology, 2018, 350: 313-322 doi: 10.1016/j.surfcoat.2018.07.026
    [4]
    施鹏程, 卢艳. 微通道纳米结构的润湿接触状态对滑移减阻影响的分子动力学研究[J]. 机械科学与技术, 2021, 40(2): 313-320 doi: 10.13433/j.cnki.1003-8728.20200055

    SHI P C, LU Y. Molecular dynamics study on influence of wetting contact state of microchannel nanostructures on sliding drag reduction[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(2): 313-320 (in Chinese) doi: 10.13433/j.cnki.1003-8728.20200055
    [5]
    刘家成, 陈二云, 杨爱玲, 等. 非光滑表面叶片气动及降噪特性的研究[J]. 热能动力工程, 2020, 35(12): 31-39 doi: 10.16146/j.cnki.rndlgc.2020.12.005

    LIU J C, CHEN E Y, YANG A L, et al. Study on noise reduction characteristics of blade with non-smooth surface[J]. Journal of Engineering for Thermal Energy and Power, 2020, 35(12): 31-39 (in Chinese) doi: 10.16146/j.cnki.rndlgc.2020.12.005
    [6]
    ZHANG S J, ZHOU Y P, ZHANG H J, et al. Advances in ultra-precision machining of micro-structured functional surfaces and their typical applications[J]. International Journal of Machine Tools and Manufacture, 2019, 142: 16-41 doi: 10.1016/j.ijmachtools.2019.04.009
    [7]
    JAIN A, BAJPAI V. Mechanical micro-texturing and characterization on Ti6Al4V for the improvement of surface properties[J]. Surface and Coatings Technology, 2019, 380: 125087 doi: 10.1016/j.surfcoat.2019.125087
    [8]
    LIU R, CHI Z D, CAO L, et al. Fabrication of biomimetic superhydrophobic and anti-icing Ti6Al4V alloy surfaces by direct laser interference lithography and hydrothermal treatment[J]. Applied Surface Science, 2020, 534, 147576 doi: 10.1016/j.apsusc.2020.147576
    [9]
    PRATAP T, PATRA K. Fabrication of micro-textured surfaces using ball-end micromilling for wettability enhancement of Ti-6Al-4V[J]. Journal of Materials Processing Technology, 2018, 262: 168-181 doi: 10.1016/j.jmatprotec.2018.06.035
    [10]
    ZHOU C L, WU X Y, LU Y J, et al. Fabrication of hydrophobic Ti3SiC2 surface with micro-grooved structures by wire electrical discharge machining[J]. Ceramics International, 2018, 44(15): 18227-18234 doi: 10.1016/j.ceramint.2018.07.032
    [11]
    PATEL D S, SINGH A, BALANI K, et al. Topographical effects of laser surface texturing on various time-dependent wetting regimes in Ti6Al4V[J]. Surface and Coatings Technology, 2018, 349: 816-829 doi: 10.1016/j.surfcoat.2018.05.032
    [12]
    刘亚军, 李皓, 李士鹏, 等. 钛合金/CFRP叠层构件螺旋铣孔界面切削热研究[J]. 机械科学与技术, 2019, 38(9): 1406-1413 doi: 10.13433/j.cnki.1003-8728.20190004

    LIU Y J, LI H, LI S P, et al. Investigation of cutting heat of interface in helical milling of titanium and carbon fiber reinforced plastic stack[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(9): 1406-1413 (in Chinese) doi: 10.13433/j.cnki.1003-8728.20190004
    [13]
    LIU Y F, SU J H, TAN C W, et al. Effect of laser texturing on mechanical strength and microstructural properties of hot-pressing joining of carbon fiber reinforced plastic to Ti6Al4V[J]. Journal of Manufacturing Processes, 2021, 65: 30-41 doi: 10.1016/j.jmapro.2021.03.021
    [14]
    CONRADI M, KOCIJAN A, KLOBĈAR D, et al. Tribological response of laser-textured Ti6Al4V alloy under dry conditions and lubricated with Hank's solution[J]. Tribology International, 2021, 160: 107049 doi: 10.1016/j.triboint.2021.107049
    [15]
    GUPTA M K, SONG Q H, LIU Z Q, et al. Machining characteristics based life cycle assessment in eco-benign turning of pure titanium alloy[J]. Journal of Cleaner Production, 2020, 251: 119598 doi: 10.1016/j.jclepro.2019.119598
    [16]
    WU M, LIU J W, HE J F, et al. Fabrication of surface microstructures by mask electrolyte jet machining[J]. International Journal of Machine Tools and Manufacture, 2020, 148: 103471 doi: 10.1016/j.ijmachtools.2019.103471
    [17]
    PAN Y Q, HOU Z B, QU N S. Improvement in accuracy of micro-dimple arrays prepared by micro-electrochemical machining with high-pressure hydrostatic electrolyte[J]. The International Journal of Advanced Manufacturing Technology, 2019, 100(5): 1767-1777
    [18]
    钱双庆. 表面织构电解加工技术的基础研究与应用[D]. 南京: 南京航空航天大学, 2011

    QIAN S Q. Fundamental research on electrochemical micromachining of surface texture and applicatons[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011 (in Chinese)
    [19]
    ZHOU Z Q, FANG X L, ZENG Y B, et al. Generating micro grooves with a semicircular cross-section using wire electrochemical micromachining[J]. The International Journal of Advanced Manufacturing Technology, 2020, 110(11-12): 2929-2940 doi: 10.1007/s00170-020-05934-2
    [20]
    LUO J X, FANG X L, ZHU D. Jet electrochemical machining of multi-grooves by using tube electrodes in a row[J]. Journal of Materials Processing Technology, 2020, 283: 116705 doi: 10.1016/j.jmatprotec.2020.116705
    [21]
    KOYANO T, HOSOKAWA A, TAKAHASHI T, et al. One-process surface texturing of a large area by electrochemical machining with short voltage pulses[J]. CIRP Annals, 2019, 68(1): 181-184 doi: 10.1016/j.cirp.2019.04.100
    [22]
    ZHOU Z W, WU X Y, LEI J G, et al. Fabrication of microgrooves with secondary microstructures by electrical discharge machining using a functionally graded laminated electrode[J]. Journal of Micromechanics and Microengineering, 2021, 31(1): 015003 doi: 10.1088/1361-6439/abc96d
    [23]
    MING P M, ZHOU W H, ZHAO C H, et al. Development of a modified through-mask electrochemical micromachining for micropatterning nonplanar surface[J]. The International Journal of Advanced Manufacturing Technology, 2017, 93(5-8): 2613-2623 doi: 10.1007/s00170-017-0541-5
    [24]
    CAI Y K, CHANG W L, LUO X C, et al. Superhydrophobic structures on 316L stainless steel surfaces machined by nanosecond pulsed laser[J]. Precision Engineering, 2018, 52: 266-275 doi: 10.1016/j.precisioneng.2018.01.004
    [25]
    WANG D H, SUN Q Q, HOKKANEN M J, et al. Design of robust superhydrophobic surfaces[J]. Nature, 2020, 582(7810): 55-59 doi: 10.1038/s41586-020-2331-8
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(4)

    Article views (217) PDF downloads(25) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return