Volume 42 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
TANG Xinyi, LI Zhipeng, WANG Yang, LI Tiemei, SUN Junhong. Numerical Simulation on Two-phase Flow Field in Torque Limited Hydrodynamic Coupling[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(1): 59-66. doi: 10.13433/j.cnki.1003-8728.20200573
Citation: TANG Xinyi, LI Zhipeng, WANG Yang, LI Tiemei, SUN Junhong. Numerical Simulation on Two-phase Flow Field in Torque Limited Hydrodynamic Coupling[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(1): 59-66. doi: 10.13433/j.cnki.1003-8728.20200573

Numerical Simulation on Two-phase Flow Field in Torque Limited Hydrodynamic Coupling

doi: 10.13433/j.cnki.1003-8728.20200573
  • Received Date: 2021-01-30
  • Publish Date: 2023-01-25
  • The complex gas-liquid two-phase flow occurs in the torque limited hydrodynamic coupling, in order to grasp the internal flow field distribution and torque characteristics of the torque limited hydrodynamic coupling, the internal flow field of the coupling was simulated by solving VOF(Volume of fluid) and Mixture two-phase flow model, and its torque characteristics was monitored. The gas-liquid two-phase distribution inside the coupling obtained by the VOF model, the internal pressure and velocity distribution obtained by the Mixture model can better reflect the change of the internal flow field of the coupling. The simulation results show that the VOF model can better simulate the torque drop of the coupling caused by the transition of the flow regime; the Mixture model cannot simulate this effect, but the torque under high or low speed ratios still have certain reference significance.
  • loading
  • [1]
    初长祥, 马文星. 工程机械液压与液力传动系统: 液压卷[M]. 北京: 化学工业出版社, 2015

    CHU C X, MA W X. Hydraulic Pressure of construction machinery and hydraulic drive system[M]. Beijing: Chemical Industry Press, 2015 (in Chinese)
    [2]
    HAMPEL U, HOPPE D, DIELE K H, et al. Application of gamma tomography to the measurement of fluid distributions in a hydrodynamic coupling[J]. Flow Measurement and Instrumentation, 2005, 16(2-3): 85-90 doi: 10.1016/j.flowmeasinst.2004.10.001
    [3]
    DA SILVA M J, LU Y, SVHNEL T, et al. Autonomous planar conductivity array sensor for fast liquid distribution imaging in a fluid coupling[J]. Sensors and Actuators A: Physical, 2008, 147(2): 508-515 doi: 10.1016/j.sna.2008.06.019
    [4]
    李兴忠, 胡春玉, 卢秀泉. 典型工况下液力偶合器内流场PIV试验[J]. 实验室研究与探索, 2019, 38(5): 20-22+41 https://www.cnki.com.cn/Article/CJFDTOTAL-SYSY201905007.htm

    LI X Z, HU C Y, LU X Q. Research on piv test of hydraulic coupling under typical working conditions[J]. Research and Exploration in Laboratory, 2019, 38(5): 20-22+41 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYSY201905007.htm
    [5]
    卢秀泉, 胡春玉, 柴亚龙, 等. 动态调速工况液力偶合器瞬态流场PIV试验[J]. 华中科技大学学报(自然科学版), 2019, 47(4): 50-54 https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG201904009.htm

    LU X Q, HU C Y, CHAI Y L, et al. Experiment of transient flow field of hydrodynamic coupling under dynamic speed regulation with PIV[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2019, 47(4): 50-54 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG201904009.htm
    [6]
    马文星, 何延东, 刘春宝. 液力传动研究现状分析与展望[J]. 农业机械学报, 2008, 39(7): 51-55 https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX200807013.htm

    MA W X, HE Y D, LIU C B. Situation and prospects of research on hydrodynamic transmission[J]. Transactions of the Chinese Society for Agricultural Machinery, 2008, 39(7): 51-55 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX200807013.htm
    [7]
    BAI L, MITRA N K, FIEBIG M. Computation of unsteady 3D turbulent flow and torque transmission in fluid couplings[C]//Proceedings of the Fourteenth International Conference on Numerical Methods in Fluid Dynamics. Bangalore, India: Springer, 1995: 435-440
    [8]
    BAI L, FIEBIG M, MITRA N K. Numerical analysis of turbulent flow in fluid couplings[J]. Journal of Fluids Engineering, 1997, 119(3): 569-576 doi: 10.1115/1.2819282
    [9]
    HUITENGA H, MITRA N K. Improving startup behavior of fluid couplings through modification of runner geometry: part Ⅱ-modification of runner geometry and its effects on the operation characteristics[J]. Journal of Fluids Engineering, 2000, 122(4): 689-693 doi: 10.1115/1.1319502
    [10]
    HAMPEL U, HOPPE D, DIELE K H, et al. Application of gamma tomography to the measurement of fluid distributions in a hydrodynamic coupling[J]. Flow Measurement and Instrumentation, 2005, 16(2-3): 85-90 doi: 10.1016/j.flowmeasinst.2004.10.001
    [11]
    HUR N, KWAK M, LEE W J, et al. Unsteady flow analysis of a two-phase hydraulic coupling[J]. AIP Conference Proceedings, 2016, 1738(1): 030034
    [12]
    HUR N, KWAK M, MOSHFEGHI M, et al. Numerical flow analyses of a two-phase hydraulic coupling[J]. Journal of Mechanical Science and Technology, 2017, 31(5): 2307-2317 doi: 10.1007/s12206-017-0427-3
    [13]
    张德生, 赵继云, 刘立宝, 等. 基于CFD的桃形腔偶合器流场分析及结构优化[J]. 中国矿业大学学报, 2010, 39(5): 687-692 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201005012.htm

    ZHANG D S, ZHAO J Y, LIU L B, et al. Flow field analysis and structure optimization of peach shaped chamber hydrodynamic coupling based on CFD[J]. Journal of China University of Mining & Technology, 2010, 39(5): 687-692 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201005012.htm
    [14]
    胡春玉. 腔型结构参数对大功率液力偶合器的性能影响与特性预测[D]. 长春: 吉林大学, 2020

    HU C Y. The influence of cavity structure parameters on the performance and characteristic prediction of high-power hydraulic coupler[D]. Changchun: Jilin University, 2020 (in Chinese)
    [15]
    赵继云, 张德生. 液力偶合器气液界面追踪数值模拟[J]. 机械工程学报, 2012, 48(4): 182-187 https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201204027.htm

    ZHAO J Y, ZHANG D S. Numerical simulation of water-air interface tracking in hydrodynamic coupling[J]. Journal of Mechanical Engineering, 2012, 48(4): 182-187 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201204027.htm
    [16]
    王阳, 李志鹏. 限矩型液力偶合器流场特性预测[J]. 机械科学与技术, 2020, 39(12): 1865-1871 doi: 10.13433/j.cnki.1003-8728.20200023

    WANG Y, LI Z P. Predicting flow field characteristics of torque-limited hydrodynamic coupling[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(12): 1865-1871 (in Chinese) doi: 10.13433/j.cnki.1003-8728.20200023
    [17]
    卢秀泉, 沈小文, 袁哲, 等. 大功率限矩型液力偶合器耦合流场特性预测[J]. 华中科技大学学报(自然科学版), 2015, 43(11): 11-15 https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG201511003.htm

    LU X Q, SHEN X W, YUAN Z. Performance prediction for coupled field of high-power torque limited hydrodynamic coupling[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2015, 43(11): 11-15 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG201511003.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)

    Article views (120) PDF downloads(18) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return