留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中心复合设计的水力旋流器结构优化与试验研究

张文华 李东来 刘秀林 张宏斌 郭建华 陈淑鑫

张文华, 李东来, 刘秀林, 张宏斌, 郭建华, 陈淑鑫. 中心复合设计的水力旋流器结构优化与试验研究[J]. 机械科学与技术, 2023, 42(7): 993-999. doi: 10.13433/j.cnki.1003-8728.20230215
引用本文: 张文华, 李东来, 刘秀林, 张宏斌, 郭建华, 陈淑鑫. 中心复合设计的水力旋流器结构优化与试验研究[J]. 机械科学与技术, 2023, 42(7): 993-999. doi: 10.13433/j.cnki.1003-8728.20230215
ZHANG Wenhua, LI Donglai, LIU Xiulin, ZHANG Hongbin, GUO Jianhua, CHEN Shuxin. Structure Parameters Optimization of Hydrocyclone by Central Omposite Design and Experiment Study[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(7): 993-999. doi: 10.13433/j.cnki.1003-8728.20230215
Citation: ZHANG Wenhua, LI Donglai, LIU Xiulin, ZHANG Hongbin, GUO Jianhua, CHEN Shuxin. Structure Parameters Optimization of Hydrocyclone by Central Omposite Design and Experiment Study[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(7): 993-999. doi: 10.13433/j.cnki.1003-8728.20230215

中心复合设计的水力旋流器结构优化与试验研究

doi: 10.13433/j.cnki.1003-8728.20230215
基金项目: 

国家自然科学基金项目 51175273

黑龙江省省属本科高校基本科研业务费项目 135409309

黑龙江省省属本科高校基本科研业务费项目 135509209

黑龙江省省属本科高校基本科研业务费项目 135409605

黑龙江省省属本科高校基本科研业务费项目 145209407

齐齐哈尔市科技计划项目 CGYGG-20202002

齐齐哈尔市科技计划项目 ZDGG-202201

详细信息
    作者简介:

    张文华(1964-),副教授,研究方向为流体机械及过程装备设计,1394895431@qq.com

  • 中图分类号: TQ051.8

Structure Parameters Optimization of Hydrocyclone by Central Omposite Design and Experiment Study

  • 摘要: 水力旋流器分离过程难以实现低能耗高效率的操作,现提出一种锥形溢流管的开缝结构。通过研究试验与响应面模型,以旋流器分离效率与压降为目标函数,实现锥形溢流管开缝层数、开缝位置及开缝角度的优化设计分析。针对Ø100 mm型旋流器,采用中值粒径为41.52 μm的玻璃珠细粉测试,实验结果表明:在一定范围内开缝定位尺寸对旋流器分离性能影响较小;开缝角度和层数对旋流器分离性能影响显著。得出最优组合是溢流管开缝层数为3层、开缝定位尺寸为5.3 mm、开缝角度为58°的旋流器。较之常规型水力旋流器,经多次实验得出入口流量为920 mL/s,旋流器分离效率增幅率为0.26%,达到最高,压降降低率为24.88%,可见节能效果显著。
  • 图  1  常规旋流器结构图

    Figure  1.  Structure diagram of conventional cyclone

    图  2  锥形溢流管开缝结构图

    Figure  2.  Structure diagram of Conical overflow pipe slit

    图  3  实验设备图

    Figure  3.  Diagrams of experimental equipment

    图  4  实验工艺流程图

    Figure  4.  Experimental process flow chart

    图  5  流量-效率压降关系图

    Figure  5.  Flow-efficiency pressure drop relationship

    图  6  不同开缝数量下进口流量-分离效率、压降曲线图

    Figure  6.  Curves of inlet flow-separation efficiency and pressure drop under different opening quantities

    图  7  不同开缝位置下进口流量-压降曲线图

    Figure  7.  Inlet flow-pressure drop curves at different slit positions

    图  8  入口流量、定位尺寸对分离性能的影响

    Figure  8.  Influence of flow rate and positioning size on separation performance

    图  9  不同开缝角度下进口流量-效率压降曲线图

    Figure  9.  Inlet flow-efficiency pressure drop curves at different opening angles

    图  10  多因素条件对分离性能的影响

    Figure  10.  Influence of multi-factor conditions on separation performance

    图  11  优化后旋流器与常规旋流器分离效率

    Figure  11.  Separation efficiency of optimized post-cyclone and conventional cyclone

    图  12  优化后旋流器与常规旋流器粒级效率对比图

    Figure  12.  Comparison of particle efficiency between the optimized cyclone and the conventional cyclone

    表  1  锥形溢流管开缝结构参数正交实验编号及对应型号

    Table  1.   Orthogonal experiment numbers and corresponding sizes of conical overflow pipe slit structure

    n=1 n=2 n=3 n=4
    a/mm θ/(°) type a/mm θ/(°) type a/mm θ/(°) type a/mm θ/(°) type
    3 30 B 3 30 C 3 30 D 3 30 E
    45 F 45 G 45 H 45 I
    60 J 60 K 60 L 60 M
    75 N 75 O 75 P 75 Q
    4 30 R 4 30 S 4 30 T 4 30 U
    45 V 45 W 45 X 45 Y
    60 Z 60 Aa 60 Bb 60 Cc
    75 Dd 75 Ee 75 Ff 75 Gf
    5 30 Hh 5 30 Ii 5 30 Jj 5 30 Kk
    45 Ll 45 Mm 45 Nn 45 Oo
    60 Pp 60 Qq 60 Rr 60 Ss
    75 Tt 75 Uu 75 Vv 75 Ww
    6 30 Xx 6 30 Yy 6 30 Zz 6 30 Aaa
    45 Bbb 45 Ccc 45 Ddd 45 Eee
    60 Fff 60 Ggg 60 Hhh 60 Iii
    75 Jjj 75 Kkk 75 Lii 75 Mmm
    下载: 导出CSV

    表  2  因素水平

    Table  2.   Factor levels

    名称 Q/(mL·s-1) a/mm
    X1 X2
    下限 680 3
    中心点 800 4.5
    上限 920 6
    下载: 导出CSV
  • [1] 丁健宁, 宫徽, 王顺煜, 等. 水力旋流分离器在水处理领域的应用研究进展[J]. 环境工程, 2021, 39(8): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-HJGC202108001.htm

    DING J N, GONG H, WANG S Y, et al. Research review on application of hydrocyclone in wastewater treatment[J]. Environmental Engineering, 2021, 39(8): 1-6. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HJGC202108001.htm
    [2] 陈唐维, 潘志成, 陈滢, 等. 旋流器分流比对剩余污泥的释碳性能影响[J]. 化工学报, 2021, 72(11): 5761-5769. https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ202111030.htm

    CHEN T W, PAN Z C, CHEN Y, et al. Effect of hydrocyclone split ratio on carbon release performance of excess sludge[J]. CIESC Journal, 2021, 72(11): 5761-5769. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ202111030.htm
    [3] GHODRAT M, KUANG S B, YU A B, et al. Numerical analysis of hydrocyclones with different vortex finder configurations[J]. Minerals Engineering, 2014, 63: 125-138. doi: 10.1016/j.mineng.2014.02.003
    [4] MARTÍNEZ L F, LAVÍN A G, MAHAMUD M M, et al. Improvements in hydrocyclone design flow lines stabilization[J]. Powder Technology, 2007, 176(1): 1-8. doi: 10.1016/j.powtec.2007.02.001
    [5] 刘鸿雁, 王亚, 韩天龙, 等. 水力旋流器溢流管结构对微细颗粒分离的影响[J]. 化工学报, 2017, 68(5): 1921-1931. https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201705022.htm

    LIU H Y, WANG Y, HAN T L, et al. Influence of vortex finder configurations on separation of fine particles[J]. CIESC Journal, 2017, 68(5): 1921-1931. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201705022.htm
    [6] 邢雷, 李金煜, 赵立新, 等. 基于响应面法的井下旋流分离器结构优化[J]. 中国机械工程, 2021, 32(15): 1818-1826. doi: 10.3969/j.issn.1004-132X.2021.15.007

    XING L, LI J Y, ZHAO L X, et al. Structural optimization of downhole hydrocyclones based on response surface methodology[J]. China Mechanical Engineering, 2021, 32(15): 1818-1826. (in Chinese) doi: 10.3969/j.issn.1004-132X.2021.15.007
    [7] 宋民航, 赵立新, 徐保蕊, 等. 液-液水力旋流器分离效率深度提升技术探讨[J]. 化工进展, 2021, 40(12): 6590-6603. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ202112021.htm

    SONG M H, ZHAO L X, XU B R, et al. Discussion on technology of improving separation efficiency of liquid-liquid hydrocyclone[J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6590-6603. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ202112021.htm
    [8] 李峰, 刘培坤, 杨兴华, 等. 渐变出口旋流器内部流场的数值模拟[J]. 流体机械, 2020, 48(12): 43-48. https://www.cnki.com.cn/Article/CJFDTOTAL-LTJX202012007.htm

    LI F, LIU P K, YANG X H, et al. Numerical simulation of the flow field in a hydrocyclone with two gradual changing exits[J]. Fluid Machinery, 2020, 48(12): 43-48. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LTJX202012007.htm
    [9] LI F, LIU P K, YANG X H, et al. Numerical simulation on the effects of different inlet pipe structures on the flow field and seperation performance in a hydrocyclone[J]. Powder Technology, 2020, 373: 254-266.
    [10] LI F, LIU P K, YANG X H, et al. Purification of granular sediments from wastewater using a novel hydrocyclone[J]. Powder Technology, 2021, 393: 751-763.
    [11] WAKIZONO Y, MAEDA T, FUKUI K, et al. Effect of ring shape attached on upper outlet pipe on fine particle classification of gas-cyclone[J]. Separation and Purification Technology, 2015, 141: 84-93.
    [12] JIANG L Y, LIU P K, YANG X H, et al. Short-circuit flow in hydrocyclones with arc-shaped vortex finders[J]. Chemical Engineering & Technology, 2018, 41(9): 1783-1792.
    [13] 刘培坤, 杜启隆, 张悦刊. 内螺旋道式旋流器流场特征及分离性能[J]. 流体机械, 2022, 50(3): 53-59. https://www.cnki.com.cn/Article/CJFDTOTAL-LTJX202203009.htm

    LIU P K, DU Q L, ZHANG Y K. The flow field characteristics and the separation performance of inner spiral channel cyclone[J]. Fluid Machinery, 2022, 50(3): 53-59. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LTJX202203009.htm
    [14] 邢雷, 张勇, 蒋明虎, 等. 轴入式两级串联旋流器流场分析与性能评估[J]. 中国机械工程, 2018, 29(16): 1927-1935. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJX201816007.htm

    XING L, ZHANG Y, JIANG M H, et al. Flow filed analysis and performance evaluation on axis-in dual-stage tandem hydrocyclones[J]. China Mechanical Engineering, 2018, 29(16): 1927-1935. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJX201816007.htm
    [15] 刘秀林, 陈建义, 姜淑凤, 等. 旋风分离器结构优化实验研究[J]. 现代化工, 2019, 39(12): 205-209. https://www.cnki.com.cn/Article/CJFDTOTAL-XDHG201912044.htm

    LIU X L, CHEN J Y, JIANG S F, et al. Experimental study on optimization of structure of cyclone separator[J]. Modern Chemical Industry, 2019, 39(12): 205-209. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDHG201912044.htm
    [16] 熊攀, 鄢曙光, 刘玮寅. 基于响应曲面法的旋风分离器结构优化[J]. 化工学报, 2019, 70(1): 154-160. https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201901018.htm

    XIONG P, YAN S G, LIU W Y. Structure optimization of cyclone based on response surface method[J]. CIESC Journal, 2019, 70(1): 154-160. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201901018.htm
    [17] 兰雅梅, 张婷婷, 王世明, 等. 旋流器结构参数对其性能的影响分析[J]. 化工机械, 2021, 48(5): 678-682. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJX202105011.htm

    LAN Y M, ZHANG T T, WANG S M, et al. Numerical analysis of the influence of hydrocyclone structural parameters on its performance[J]. Chemical Engineering & Machinery, 2021, 48(5): 678-682. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HGJX202105011.htm
    [18] 刘鸿雁, 韩天龙, 王亚, 等. 水力旋流器新型出口挡板结构对分离性能的影响[J]. 化工学报, 2018, 69(5): 2081-2088. https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201805033.htm

    LIU H Y, HAN T L, WANG Y, et al. Influence of new outlet configurations with baffle on hydrocycloneon separation performance[J]. Chinese Journal of Chemical Engineering, 2018, 69(5): 2081-2088. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201805033.htm
    [19] 赵庆国, 张明贤. 水力旋流器分离技术[M]. 北京: 化学工业出版社, 2003.

    ZHAO Q G, ZHANG M X. Separation technology of hydrocyclone[M]. Beijing: Chemical Industry Press, 2003. (in Chinese)
    [20] 李莉, 张赛, 何强, 等. 响应面法在试验设计与优化中的应用[J]. 实验室研究与探索, 2015, 34(8): 40-45.2003. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSY201508012.htm

    Li L, ZHANG S, HE Q, et al. Application of response surface method in experimental design and optimization[J]. Laboratory Research and Exploration, 2015, 34(8): 40-45. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYSY201508012.htm
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  217
  • HTML全文浏览量:  55
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-12
  • 刊出日期:  2023-07-25

目录

    /

    返回文章
    返回