留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

履带式爬壁机器人运动学建模与磁吸附设计

赵飞

赵飞. 履带式爬壁机器人运动学建模与磁吸附设计[J]. 机械科学与技术,2024,43(5):837-843 doi: 10.13433/j.cnki.1003-8728.20230042
引用本文: 赵飞. 履带式爬壁机器人运动学建模与磁吸附设计[J]. 机械科学与技术,2024,43(5):837-843 doi: 10.13433/j.cnki.1003-8728.20230042
ZHAO Fei. Kinematic Modeling and Magnetic Adsorption Design of Crawler Wall-climbing Robot[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(5): 837-843. doi: 10.13433/j.cnki.1003-8728.20230042
Citation: ZHAO Fei. Kinematic Modeling and Magnetic Adsorption Design of Crawler Wall-climbing Robot[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(5): 837-843. doi: 10.13433/j.cnki.1003-8728.20230042

履带式爬壁机器人运动学建模与磁吸附设计

doi: 10.13433/j.cnki.1003-8728.20230042
基金项目: 工信部高技术船舶科研项目(MC-202031-Z07)与镇江市产业前瞻与共性关键技术项目(GY2020009,GY2021002)
详细信息
    作者简介:

    赵飞,高级工程师,硕士,82009184@qq.com

  • 中图分类号: TP241

Kinematic Modeling and Magnetic Adsorption Design of Crawler Wall-climbing Robot

  • 摘要: 针对搭载高压水射流装置的履带式爬壁机器人附壁稳定性问题,结合设计的爬壁机器人的结构特点,建立了爬壁机器人吸附在船舶壁面时的运动学模型,分析并求解了影响爬壁机器人附壁性能的各个因素,并对其磁吸附单元进行设计,分析磁吸附单元在N-S充磁和Halbach充磁方向时磁力与间隙关系。借助拉伸试验机对永磁吸附单元进行试验,验证了磁吸附单元的可靠性。并对搭建的功能性样机,开展室内水平行走、垂直爬壁和1∶1实船模型爬壁试验,验证了分析结果的正确性,为履带式爬壁机器人进一步结构优化设计和动力学分析提供了基础。
  • 图  1  爬壁机器人结构

    Figure  1.  Structure of wall-climbing robot

    图  2  机器人附壁受力图

    Figure  2.  Attached wall stress of robot

    图  3  抗下滑时单块磁吸附单元吸附力与壁面角度曲线

    Figure  3.  Curve between the adsorption force of a single magnetic adsorption unit and wall inclination angle during anti-sliding

    图  4  抗倾覆时单块磁吸附单元吸附力与壁面角度曲线

    Figure  4.  Curve between the adsorption force of a single magnetic adsorption unit and wall inclination angle during anti-overturning

    图  5  抗静态失稳单块磁吸附单元吸附力曲线

    Figure  5.  Adsorption force curve of single-block magnetic adsorption unit against static instability

    图  6  磁吸附单元总体结构

    Figure  6.  Overall structure of magnetic adsorption unit

    图  7  磁吸附单元连接方式

    Figure  7.  Connection mode of magnetic adsorption unit

    图  8  吸附力与壁面间隙关系曲线

    Figure  8.  Curve of adsorption force and wall clearance

    图  9  N-S正反充磁方案

    Figure  9.  N-S Positive and negative magnetization scheme

    图  10  Halbach充磁方案

    Figure  10.  Halbach magnetization scheme

    图  11  不同充磁方案对比

    Figure  11.  Comparison of different magnetization schemes

    图  12  永磁吸附单元拉伸试验

    Figure  12.  Tensile test of permanent magnet adsorption unit

    图  13  永磁吸附单元剪切试验

    Figure  13.  Shear test of permanent magnet adsorption unit

    图  14  履带式爬壁机器人样机

    Figure  14.  Prototype of tracked wall-climbing robot

    图  15  机器人样机附壁试验

    Figure  15.  Wall attachment test of robot prototype

    表  1  爬壁机器人技术参数

    Table  1.   Technical parameters of wall-climbing robot

    参数   数值
    结构尺寸/mm 约1 280 × 1 170 × 400
    作业速度/(m·min−1 >8
    非作业速度/(m·min−1 >30
    本体自重/kg <150
    负载重量/kg >150(立面垂直爬行)
    清污范围直径/mm 400
    清污盘内径/mm 470
    清污盘外径/mm 560
    下载: 导出CSV
  • [1] 闫久江, 赵西振, 左干, 等. 爬壁机器人研究现状与技术应用分析[J]. 机械研究与应用, 2015, 28(3): 52-54. doi: 10.3969/j.issn.1007-4414.2015.03.018

    YAN J J, ZHAO X Z, ZUO G, et al. Research status and analysis of technology application for wall-climbing robot[J]. Mechanical Research & Application, 2015, 28(3): 52-54. (in Chinese) doi: 10.3969/j.issn.1007-4414.2015.03.018
    [2] CARLOS DA MAIA M L. Alternatives to conventional methods of surface preparation for ship repairs[J]. Journal of Protective Coatings & Linings, 2000, 17(5): 31-39.
    [3] ROSS B, BARES J, FROMME C. A semi-autonomous robot for stripping paint from large vessels[J]. The International Journal of Robotics, 2003, 22(7-8): 617-626.
    [4] 衣正尧, 弓永军, 王祖温, 等. 新型除锈爬壁机器人附壁建模与仿真[J]. 四川大学学报(工程科学版), 2011, 43(2): 211-216.

    YI Z Y, GONG Y J, WANG Z W, et al. Wall-attachment model and its simulation on a new wall-climbing robot for rust removal[J]. Journal of Sichuan University (Engineering Science Edition), 2011, 43(2): 211-216. (in Chinese)
    [5] 衣正尧, 弓永军, 王祖温, 等. 新型船舶壁面除锈爬壁机器人动力学建模与分析[J]. 机械工程学报, 2010, 46(15): 23-30. doi: 10.3901/JME.2010.15.023

    YI Z Y, GONG Y J, WANG Z W, et al. Dynamic modeling and analysis on a new type wall-climbing robot for ship wall rust removal[J]. Journal of Mechanical Engineering, 2010, 46(15): 23-30. (in Chinese) doi: 10.3901/JME.2010.15.023
    [6] 郭登辉, 陈原. 管道攀爬机器人非接触变磁隙式永磁吸附机构的设计与吸附性能优化[J]. 中国机械工程, 2021, 32(14): 1659-1668. doi: 10.3969/j.issn.1004-132X.2021.14.004

    GUO D H, CHEN Y. Design and adsorption performance optimization of non-contact variable magnetic gap type permanent magnet absorption mechanisms of pipe climbing robots[J]. China Mechanical Engineering, 2021, 32(14): 1659-1668. (in Chinese) doi: 10.3969/j.issn.1004-132X.2021.14.004
    [7] 骆杨, 张兴国, 徐康. 爬壁机器人磁吸附结构的磁路优化设计与试验分析[J]. 机床与液压, 2021, 49(23): 61-66. doi: 10.3969/j.issn.1001-3881.2021.23.012

    LUO Y, ZHANG X G, XU K. Optimal design and experimental analysis of magnetic circuit of magnetic adsorption structure of the wall-climbing robot[J]. Machine Tool & Hydraulics, 2021, 49(23): 61-66. (in Chinese) doi: 10.3969/j.issn.1001-3881.2021.23.012
    [8] 闫晨飞, 孙振国, 张文增, 等. 变磁化方向单元组合式永磁吸附装置优化设计[J]. 电工技术学报, 2016, 31(3): 188-194. doi: 10.3969/j.issn.1000-6753.2016.03.024

    YAN C F, SUN Z G, ZHANG W Z, et al. Optimization design of the unit combined permanent magnetic adsorption device with variable magnetization directions[J]. Transactions of China Electrotechnical Society, 2016, 31(3): 188-194. (in Chinese) doi: 10.3969/j.issn.1000-6753.2016.03.024
    [9] 孙涛, 姜哲, 罗高生, 等. 船体表面清洗机器人磁吸附机构的优化设计[J]. 船舶工程, 2021, 43(5): 145-153.

    SUN T, JIANG Z, LUO G S, et al. Optimization design and research of magnetic adhesion mechanism of hull surface cleaning robot[J]. Ship Engineering, 2021, 43(5): 145-153. (in Chinese)
    [10] 赖欣, 师靖远, 彭天宇, 等. 爬壁机器人变密度拓扑优化吸附结构研究[J]. 机械科学与技术, 2021, 40(6): 821-827.

    LAI X, SHI J Y, PENG T Y, et al. Research on adsorption structure of wall climbing robot with variable density topology optimization[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(6): 821-827. (in Chinese)
    [11] 黄渭, 朱甲射, 陈咏华, 等. Halbach型永磁吸附装置吸附力计算方法研究[J]. 机电工程, 2019, 36(11): 1221-1225. doi: 10.3969/j.issn.1001-4551.2019.11.019

    HUANG W, ZHU J S, CHEN Y H, et al. Adsorption force calculation of Halbach permanent magnetic adsorption device[J]. Journal of Mechanical & Electrical Engineering, 2019, 36(11): 1221-1225. (in Chinese) doi: 10.3969/j.issn.1001-4551.2019.11.019
    [12] 吴善强, 程楠, 金超, 等. 磁吸附爬壁机器人履带模块运动仿真与实验[J]. 制造业自动化, 2016, 38(4): 127-130. doi: 10.3969/j.issn.1009-0134.2016.04.033

    WU S Q, CHENG N, JIN C, et al. Kinematics simulation and experiment on track module of wall climbing robot with magnetic Track[J]. Manufacturing Automation, 2016, 38(4): 127-130. (in Chinese) doi: 10.3969/j.issn.1009-0134.2016.04.033
    [13] 胡绍杰, 彭如恕, 何凯, 等. 履带式爬壁机器人磁吸附单元优化设计与实验研究[J]. 机械与电子, 2018, 36(1): 69-74. doi: 10.3969/j.issn.1001-2257.2018.01.017

    HU S J, PENG R S, HE K, et al. Optimal design and experimental study on magnetic adsorption unit of crawler-type wall-climbing robot[J]. Machinery & Electronics, 2018, 36(1): 69-74. (in Chinese) doi: 10.3969/j.issn.1001-2257.2018.01.017
    [14] 刘佳, 蔡文霞, 孙宏强. 爬壁机器人解析动力学建模与仿真[J]. 机械科学与技术, 2021, 40(3): 371-376.

    LIU J, CAI W X, SUN H Q. Analytical dynamic modeling and simulation of climbing robot[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(3): 371-376. (in Chinese)
    [15] 王瑞, 高荣慧, 翟华. 三角履带爬壁机器人越障动力学建模与仿真[J]. 机械设计与制造, 2017(增刊1): 205-208. doi: 10.3969/j.issn.1001-3997.2017.z1.055

    WANG R, GAO R H, ZHAI H. Dynamic modeling and simulation for obstacle-climbing of wall-climbing robot with triangular track[J]. Machinery Design & Manufacture, 2017(Sup.1): 205-208. (in Chinese) doi: 10.3969/j.issn.1001-3997.2017.z1.055
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  97
  • HTML全文浏览量:  39
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-12
  • 刊出日期:  2024-05-31

目录

    /

    返回文章
    返回