留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

爬杆机器人动力学仿真及其驱动转矩控制研究

罗刚 何涛 许博 赵凯平 王顺

罗刚,何涛,许博, 等. 爬杆机器人动力学仿真及其驱动转矩控制研究[J]. 机械科学与技术,2024,43(5):781-789 doi: 10.13433/j.cnki.1003-8728.20220304
引用本文: 罗刚,何涛,许博, 等. 爬杆机器人动力学仿真及其驱动转矩控制研究[J]. 机械科学与技术,2024,43(5):781-789 doi: 10.13433/j.cnki.1003-8728.20220304
LUO Gang, HE Tao, XU Bo, ZHAO Kaiping, WANG Shun. Dynamics Simulation and Driving Torque Control of Pole Climbing Robot[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(5): 781-789. doi: 10.13433/j.cnki.1003-8728.20220304
Citation: LUO Gang, HE Tao, XU Bo, ZHAO Kaiping, WANG Shun. Dynamics Simulation and Driving Torque Control of Pole Climbing Robot[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(5): 781-789. doi: 10.13433/j.cnki.1003-8728.20220304

爬杆机器人动力学仿真及其驱动转矩控制研究

doi: 10.13433/j.cnki.1003-8728.20220304
基金项目: 安徽省高校优秀青年人才支持计划(gxyq2022017)与矿山智能装备与技术安徽省重点实验室开放基金项目(ZKSYS202101)
详细信息
    作者简介:

    罗刚,博士研究生,lg1469757460@163.com

    通讯作者:

    何涛,副教授,硕士生导师,taoheaust@163.com

  • 中图分类号: TB122;TP242

Dynamics Simulation and Driving Torque Control of Pole Climbing Robot

  • 摘要: 为改善爬杆机器人驱动性能,结合机器人虚拟样机与动力学仿真,提出一种前馈补偿与PID调节优化驱动转矩波动的复合控制方法。在ADAMS中建立机器人多体动力学模型,进行了攀爬运动仿真;在Simulink中搭建了PID控制系统,调节夹块位移量;依据夹持传动的“力矩-位移”数学模型,建立了含有前馈补偿的复合控制系统。由联合仿真可知,采用单一PID控制的机器人,提高夹块位移控制精度会引起驱动转矩波动的增加;复合控制减少了驱动转矩的波动,且驱动转矩的调整幅值比PID控制降低了约24.7%,提高了机器人在攀爬运动中驱动系统的输出效能。
  • 图  1  爬杆机器人模型图

    Figure  1.  Model of pole climbing robot

    图  2  爬杆机器人工作过程图

    Figure  2.  Working process of pole climbing robot

    图  3  ADAMS模型图

    Figure  3.  ADAMS model

    图  4  驱动设置与运动阶段划分

    a.调整阶段 b.上夹块松离 c.上夹块抬升 d.上夹块夹紧e.机架抬升 f.下夹块松离 g.下夹块抬升 h.下夹块夹紧

    Figure  4.  Motion settings and motion phase division

    图  5  PID控制系统

    Figure  5.  PID control system

    图  6  ADAMS-Simulink联合仿真系统图

    Figure  6.  ADAMS-Simulink joint simulation system

    图  7  位移目标器组成

    Figure  7.  Composition of displacement generator

    图  8  ADAMS模块组成

    Figure  8.  Composition of ADAMS module

    图  9  PID控制对比图

    Figure  9.  Comparison of PID control

    图  10  PID控制系统开环奈奎斯特图

    Figure  10.  Nyquist diagram of PID control system

    图  11  驱动转矩变化图

    Figure  11.  Changes in driving torque

    图  12  夹持机构传动模型图

    Figure  12.  Model of clamping mechanism

    图  13  丝杆传动模型图

    Figure  13.  Model of screw transmission

    图  14  夹块受力分析与机构运动简图

    Figure  14.  Force analysis and mechanism motion of clamping block

    图  15  前馈补偿与PID调节复合控制

    Figure  15.  Composite control with feedforward compensation and PID regulation

    图  16  前馈补偿器组成

    Figure  16.  Composition of feedforward compensator

    图  17  复合控制系统图

    Figure  17.  Composite control system

    图  18  比例系数与位移误差和转矩波动变化图

    Figure  18.  The influence of proportional coefficient and displacement error on torque fluctuation

    图  19  复合控制的PID控制器开环奈奎斯特图

    Figure  19.  Nyquist diagram of PID controller with composite control

    图  20  驱动转矩对比图

    Figure  20.  Comparison of driving torques

    表  1  爬杆机器人结构尺寸

    Table  1.   Structural dimensions of pole climbing robot

    结构名及单位 数值
    目标杆直径/mm 140
    丝杆螺纹半径/mm 6
    导轨跨度/mm 260
    推动缸有效行程/mm 80
    转向缸有效行程/mm 95
    机器人总高/mm 690
    辅助爪齿距/mm 27.3
    丝杆与夹块圆面中心距/mm 64
    下载: 导出CSV

    表  2  PID参数的设置与位移误差大小

    Table  2.   PID parameter settings and displacement error

    PID参数 水平
    1 2 3
    P −0.04 −0.04 −0.04
    I −0.8 −0.8 −0.8
    D −0.7 −0.6 −0.4
    位移误差量/mm 1.97 2.19 2.96
    相对误差量/% 1.70 1.89 2.55
    下载: 导出CSV

    表  3  前馈补偿器参数说明

    Table  3.   Parameters of feedforward compensator

    参数名及单位 数值
    螺纹中经d2/mm 11
    螺纹螺距ph 3
    螺纹升角α/rad 0.105
    螺纹摩擦角φ/rad 0.244
    夹块质量m/kg 0.505
    夹块转动惯量Jm/(kg·mm2 2.030
    连杆长lAB/mm 84
    零态BC段长lBC/mm 81.200
    下载: 导出CSV
  • [1] 夏文涵, 王凯, 李彦, 等. 基于TRIZ的管道机器人自适应检测模块创新设计[J]. 机械工程学报, 2016, 52(5): 58-67. doi: 10.3901/JME.2016.05.058

    XIA W H, WANG K, LI Y, et al. Innovative design for adaptive detection module of in-pipe robot based on TRIZ[J]. Journal of Mechanical Engineering, 2016, 52(5): 58-67. (in Chinese) doi: 10.3901/JME.2016.05.058
    [2] 邱仕诚, 伍剑波, 赵恒忠, 等. 一种基于磁力吸附的储罐爬壁机器人本体设计[J]. 中国机械工程, 2022, 33(3): 270-278.

    QIU S C, WU J B, ZHAO H Z, et al. Body design of a storage tank wall-climbing robot based on magnetic adsorption[J]. China Mechanical Engineering, 2022, 33(3): 270-278. (in Chinese)
    [3] 洪晓玮, 陈勇. 一种新型电磁吸附式爬壁机器人的研制[J]. 机械科学与技术, 2021, 40(3): 337-343.

    HONG X W, CHEN Y. Development of innovative wall-climbing robot with electromagnetic absorption[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(3): 337-343. (in Chinese)
    [4] 秦基伟, 常勇, 袁兵兵, 等. 一种滚动密封式爬壁机器人动力学建模与分析[J]. 中国机械工程, 2019, 30(24): 2978-2985.

    QIN J W, CHANG Y, YUAN B B, et al. Dynamics modeling and analysis of a rolling sealed wall-climbing robot[J]. China Mechanical Engineering, 2019, 30(24): 2978-2985. (in Chinese)
    [5] 王学军, 张帆. 攀爬机器人动力学建模与分析[J]. 机械科学与技术, 2023, 42(1): 38-45.

    WANG X J, ZHANG F. Dynamic modeling and analysis of climbing robot[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(1): 38-45. (in Chinese)
    [6] 刘彦伟, 黄响, 王李梦, 等. 仿生爪刺式双足爬壁机器人设计与分析[J]. 机械科学与技术, 2019, 38(8): 1185-1190.

    LIU Y W, HUANG X, WANG L M, et al. Design and analysis of a bio-inspired biped wall-climbing robot with spines[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(8): 1185-1190. (in Chinese)
    [7] BIAN S Y, WEI Y L, XU F, et al. A four-legged wall-climbing robot with spines and miniature setae array inspired by longicorn and gecko[J]. Journal of Bionic Engineering, 2021, 18(2): 292-305. doi: 10.1007/s42235-021-0032-0
    [8] 魏武, 孙洪超. 蛇形机器人桥梁缆索攀爬步态控制研究[J]. 中国机械工程, 2012, 23(10): 1230-1236.

    WEI W, SUN H C. Research on gait generation and control of snake-like robot for bridge cable climbing[J]. China Mechanical Engineering, 2012, 23(10): 1230-1236. (in Chinese)
    [9] 江励, 管贻生, 周雪峰, 等. 双爪式爬杆机器人的夹持性能分析[J]. 机械工程学报, 2016, 52(3): 34-40. doi: 10.3901/JME.2016.03.034

    JIANG L, GUAN Y S, ZHOU X F, et al. Grasping performance analysis of a biped-pole-climbing robot[J]. Journal of Mechanical Engineering, 2016, 52(3): 34-40. (in Chinese) doi: 10.3901/JME.2016.03.034
    [10] ZHANG J F, LIAO D S, GUO P. Design of a live work climbing robot platform for the distribution[C]// Proceedings of the 2021 China International Conference on Electricity Distribution. Shanghai, China: IEEE, 2021: 252-258.
    [11] 胡健力. 气动爬杆机器人的研究[D]. 杭州: 浙江大学, 2018.

    HU J L. Research on pneumatic pole-climbing robot[D]. Hangzhou: Zhejiang University, 2018. (in Chinese)
    [12] GUI P F, TANG L Q, MUKHOPADHYAY S. A novel robotic tree climbing mechanism with anti-falling functionality for tree pruning[J]. Journal of Mechanisms and Robotics, 2018, 10(1): 014502. doi: 10.1115/1.4038219
    [13] LIAO C, ZHANG H H, BERRY F, et al. Analytical mechatronic modeling and analysis for anti-walkout of PTU actuator with ADAMS-simulink co-simulation[C]//Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Online: ASME, 2020: V004T04A028.
    [14] LIAO C, ZHANG J B, CHEN W H, et al. Union simulation on lower limbs rehabilitation robot based on MATLAB and ADAMS[C]// Proceedings of the 2015 10th IEEE Conference on Industrial Electronics and Applications. Auckland, New Zealand: IEEE, 2015: 557-562.
    [15] LYU B H, LIU S, GU J S, et al. Dynamics co-simulation of multi-dof dexterous robot hand system based on ADAMS and simulink[C]// Proceedings of the 8th International Conference on Computer Modeling and Simulation. Canberra, Australia: ACM, 2017: 38-41.
    [16] 陈梓铭, 薛志刚, 张松, 等. 基于ADAMS与Simulink联合仿真的滑移门关闭能量分析[J]. 中国机械工程, 2020, 31(8): 924-930

    CHEN Z M, XUE Z G, ZHANG S, et al. Closing effort analysis of sliding doors based on co-simulation of ADAMS and simulink[J]. China Mechanical Engineering, 2020, 31(8): 924-930. (in Chinese)
    [17] 毛君, 郭浩, 陈洪月. 新型萤火虫算法及在刮板输送机伸缩机尾PID控制中的应用[J]. 机械科学与技术, 2018, 37(9): 1366-1371.

    MAO J, GUO H, CHEN H Y. A new firefly algorithm and its application to PID control of scraper conveyor's extensible tail[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(9): 1366-1371. (in Chinese)
    [18] 孙恒, 陈作模, 葛文杰. 机械原理[M]. 8版. 北京: 高等教育出版社, 2013.

    SUN H, CHEN Z M, GE W J. Mechanical principles[M]. 8th ed. Beijing: Higher Education Press, 2013. (in Chinese)
    [19] 毛晨曦, 沈煜年. 爪刺式飞行爬壁机器人的仿生机理与系统设计[J]. 机器人, 2021, 43(2): 246-256.

    MAO C X, SHEN Y N. Bionics mechanism and system design of a spine-type flying and wall-climbing robot[J]. Robot, 2021, 43(2): 246-256. (in Chinese)
    [20] LI J F, ZHOU Y, DONG M J. Isokinetic muscle strength training strategy of an ankle rehabilitation robot based on adaptive gain and cascade PID control[J]. Transactions on Cognitive and Developmental Systems, 2023, 15(1): 100-110. doi: 10.1109/TCDS.2022.3145998
    [21] 董景新, 赵长德, 郭美凤, 等. 控制工程基础[M]. 4版. 北京: 清华大学出版社, 2015.

    DONG J X, ZHAO C D, GUO M F, et al. Introduction to control engineering[M]. 4th ed. Beijing: Tsinghua University Press, 2015. (in Chinese)
  • 加载中
图(20) / 表(3)
计量
  • 文章访问数:  72
  • HTML全文浏览量:  27
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-27
  • 刊出日期:  2024-05-31

目录

    /

    返回文章
    返回