留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电涡流柔性触觉传感器的结构设计与实验

朱姿娜 张芮 曾阳浩 陈赛旋

朱姿娜,张芮,曾阳浩, 等. 电涡流柔性触觉传感器的结构设计与实验[J]. 机械科学与技术,2024,43(5):865-873 doi: 10.13433/j.cnki.1003-8728.20220298
引用本文: 朱姿娜,张芮,曾阳浩, 等. 电涡流柔性触觉传感器的结构设计与实验[J]. 机械科学与技术,2024,43(5):865-873 doi: 10.13433/j.cnki.1003-8728.20220298
ZHU Zina, ZHANG Rui, ZENG Yanghao, CHEN Saixuan. Structure Design and Experiment of Eddy Current Flexible Tactile Sensor[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(5): 865-873. doi: 10.13433/j.cnki.1003-8728.20220298
Citation: ZHU Zina, ZHANG Rui, ZENG Yanghao, CHEN Saixuan. Structure Design and Experiment of Eddy Current Flexible Tactile Sensor[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(5): 865-873. doi: 10.13433/j.cnki.1003-8728.20220298

电涡流柔性触觉传感器的结构设计与实验

doi: 10.13433/j.cnki.1003-8728.20220298
基金项目: 国家自然基金青年基金项目(51705305)、江苏省重点研发计划(BE2020082-3)及上海市大型构件智能制造机器人技术协同创新中心开放基金项目(ZXY20211101)
详细信息
    作者简介:

    朱姿娜,副教授,博士,zhuzina@126.com

  • 中图分类号: TP212

Structure Design and Experiment of Eddy Current Flexible Tactile Sensor

  • 摘要: 基于电涡流原理设计了一种可检测三维力的柔性触觉传感器。该传感器的结构采用多线圈阵列与柔性材料相结合的方式,外部施加的力使柔性材料形变,从而使金属薄层与线圈的间距改变,进而各线圈的感应电压发生变化。通过外部施加的力与线圈输出的感应电压之间的关系,建立对应的特征函数,判断外力施加的方向和大小。根据所设计的传感器结构确定制造工艺并进行制备,经一系列试验测试了传感器的输出特性,结果表明所设计的传感器具备三维传感能力,满足机器人柔性触觉感知和三维测量工作的需要。
  • 图  1  传感器工作原理

    Figure  1.  Working principle of sensor

    图  2  传感器三维模型

    Figure  2.  Three-dimensional model of sensor

    图  3  线圈阵列及编号

    Figure  3.  Coil array and number

    图  4  传感器及线圈尺寸

    Figure  4.  Sensor and coil dimensions

    图  5  传感器受力变形示意图

    Figure  5.  Schematic diagram of stress and deformation of sensor

    图  6  传感器力学模型

    Figure  6.  Mechanical model of sensor

    图  7  传感器仿真模型

    Figure  7.  Sensor simulation model

    图  8  网格划分

    Figure  8.  Grid division

    图  9  有限元受力仿真分析

    Figure  9.  Finite element force simulation analysis

    图  10  线圈制作工艺流程

    Figure  10.  Coil manufacturing process flow

    图  11  传感器制备

    Figure  11.  Sensor preparation

    图  12  传感器

    Figure  12.  Sensor

    图  13  实验平台

    Figure  13.  Experimental platform

    图  14  xyz方向力与电压关系

    Figure  14.  Relationship between xyz direction force and voltage

    图  15  剪切力测量角度与计算角度

    Figure  15.  Measurement angle and calculation angle of shear force

    表  1  x方向剪切力线圈输出电压数据

    Table  1.   Output voltage data of shear force coil in x direction

    Fx / N C1 / μV C5 / μV C6 / μV C8 / μV C9 / μV
    0 2.5679 1.6968 1.4467 2.5285 1.6608
    2 2.5838 1.5358 1.5397 2.3325 1.8478
    4 2.6206 1.2608 1.6847 1.9735 2.1328
    6 2.6781 0.9338 1.9417 1.5065 2.5048
    8 2.7420 0.5368 2.3027 0.8535 2.9378
    10 2.8289 0.0588 2.9007 0.0725 3.5728
    下载: 导出CSV

    表  2  y方向剪切力线圈输出电压数据

    Table  2.   Output voltage data of shear force coil in y direction

    Fy / N C1 / μV C5 / μV C6 / μV C8 / μV C9 / μV
    0 2.5379 1.4798 2.6085 1.4167 1.7108
    2 2.5499 1.9198 2.4129 1.7212 1.5978
    4 2.5869 2.5498 2.1303 2.1497 1.3648
    6 2.6409 3.2998 1.75982 2.6997 1.0478
    8 2.7119 4.1698 1.2256 3.5268 0.5748
    10 2.8099 5.2128 0.4725 4.4659 0.0008
    下载: 导出CSV

    表  3  z方向垂直力线圈输出电压数据

    Table  3.   Output voltage data of vertical force coil in z direction

    Fz / N C1 / μV C5 / μV C6 / μV C8 / μV C9 / μV
    0 2.5679 1.5098 1.4467 2.5285 1.6608
    2 2.6119 1.6318 1.6897 2.572 1.6741
    4 2.7609 1.9008 2.0567 2.5907 1.6998
    6 3.0589 2.3358 2.5707 2.6127 1.7177
    8 3.4299 2.8618 3.2677 2.6397 1.7518
    10 3.8852 3.4728 4.0707 2.6588 1.7930
    下载: 导出CSV
  • [1] 王宏民, 梁靖斌, 李江源, 等. 机械手触觉技术研究发展综述[J]. 传感器世界, 2021, 27(12): 1-9. doi: 10.3969/j.issn.1006-883X.2021.12.002

    WANG H M, LIANG J B, LI J Y, et al. Overview of the development of manipulator tactile technology[J]. Sensor World, 2021, 27(12): 1-9. (in Chinese) doi: 10.3969/j.issn.1006-883X.2021.12.002
    [2] ZHANG L, PAN J, ZHANG Z, et al. Ultrasensitive skin-like wearable optical sensors based on glass micro/nanofibers[J]. Opto-Electronic Advances, 2020, 3(3): 190022.
    [3] MONTAÑ A, SUÁREZ R. Unknown object manipulation based on tactile information[C]//Proceedings of 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems. Hamburg, Germany: IEEE, 2015: 5642-5647.
    [4] JU F, WANG Y M, ZHANG Z, et al. A miniature piezoelectric spiral tactile sensor for tissue hardness palpation with catheter robot in minimally invasive surgery[J]. Smart Materials and Structures, 2019, 28(2): 025033. doi: 10.1088/1361-665X/aafc8d
    [5] SUN X G, SUN J H, LI T, et al. Flexible tactile electronic skin sensor with 3D force detection based on porous CNTs/PDMS nanocomposites[J]. Nano-Micro Letters, 2019, 11(1): 57. doi: 10.1007/s40820-019-0288-7
    [6] WANG X W, GU Y, XIONG Z P, et al. Silk-molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals[J]. Advanced Materials, 2014, 26(9): 1336-1342. doi: 10.1002/adma.201304248
    [7] LUMELSKY V J, SHUR M S, WAGNER S. Sensitive skin[J]. IEEE Sensors Journal, 2002, 1(1): 41-51.
    [8] ZHANG L L, FU Y M, XING L L, et al. A self-powered flexible vision electronic-skin for image recognition based on a pixel-addressable matrix of piezophototronic ZnO nanowire arrays[J]. Journal of Materials Chemistry C, 2017, 5(24): 6005-6013. doi: 10.1039/C7TC01842H
    [9] 宋冠儒, 刘冲, 李经民, 等. 电涡流传感器探头的结构优化[J]. 机电技术, 2021(4): 61-64.

    SONG G R, LIU C, LI J M, et al. Structure optimization of eddy current sensor probe[J]. Mechanical & Electrical Technology, 2021(4): 61-64. (in Chinese)
    [10] 张颖, 行鸿彦, 张旭, 等. 土壤水分传感器探头的仿真分析[J]. 电子测量与仪器学报, 2021, 35(4): 55-65.

    ZHANG Y, XING H Y, ZHANG X, et al. Simulation analysis of soil moisture sensor probe[J]. Journal of Electronic Measurement and Instrumentation, 2021, 35(4): 55-65. (in Chinese)
    [11] WANG Y C, WU X, MEI D Q, et al. Flexible tactile sensor array for distributed tactile sensing and slip detection in robotic hand grasping[J]. Sensors and Actuators A:Physical, 2019, 297: 111512. doi: 10.1016/j.sna.2019.07.036
    [12] 李铁军, 戴骐, 杨若曦, 等. 基于PVDF压电薄膜的触觉传感器研究[J]. 传感器与微系统, 2021, 40(9): 68-70.

    LI T J, DAI Q, YANG R X, et al. Research on tactile sensor based on PVDF piezoelectric thin-film[J]. Transducer and Microsystem Technologies, 2021, 40(9): 68-70. (in Chinese)
    [13] CHEN W F, YAN X. Progress in achieving high-performance piezoresistive and capacitive flexible pressure sensors: a review[J]. Journal of Materials Science & Technology, 2020, 43: 175-188.
    [14] 钱煌, 陆熊, 张珅榕, 等. 面向电磁式力触觉再现的三维电磁作用力测量系统[J]. 电子测量技术, 2019, 42(1): 45-48.

    QIAN H, LU X, ZHANG S R, et al. Three-dimensional electromagnetic force measurement system for electromagnetic haptic rendering[J]. Electronic Measurement Technology, 2019, 42(1): 45-48. (in Chinese)
    [15] 李凤超, 孔振, 吴锦华, 等. 柔性压阻式压力传感器的研究进展[J]. 物理学报, 2021, 70(10): 100703. doi: 10.7498/aps.70.20210023

    LI F C, KONG Z, WU J H, et al. Advances in flexible piezoresistive pressure sensor[J]. Acta Physica Sinica, 2021, 70(10): 100703. (in Chinese) doi: 10.7498/aps.70.20210023
    [16] 孙朝明, 徐彦霖, 刘宝. 有限元方法用于涡流电磁场计算的有效性分析[J]. 无损检测, 2006, 28(11): 561-564.

    SUN C M, XU Y L, LIU B. Analysis of validation of numerical calculation of electromagnetic field in eddy current testing using finite element method[J]. Nondestructive Testing, 2006, 28(11): 561-564. (in Chinese)
    [17] 刘少伟, 郭奇. 基于线圈互感的阵列涡流传感器优化设计[J]. 传感器与微系统, 2015, 34(1): 107-109.

    LIU S W, GUO Q. Optimal design of array eddy current sensor based on coils mutual inductance[J]. Transducer and Microsystem Technologies, 2015, 34(1): 107-109. (in Chinese)
    [18] 曹青松, 毕彬杰, 周继惠. 柔性涡流阵列传感器的磁场计算分析[J]. 传感器与微系统, 2016, 35(11): 6-8.

    CAO Q S, BI B J, ZHOU J H. Magnetic field computational analysis of flexible eddy current array sensor[J]. Transducer and Microsystem Technologies, 2016, 35(11): 6-8. (in Chinese)
    [19] 何永勃, 邵雨果. 阵列涡流传感器互感信息三维有限元仿真[J]. 中国民航大学学报, 2010, 28(1): 29-32.

    HE Y B, SHAO Y G. 3-D finite element simulation on mutual inductance between arraies of eddy current sensor[J]. Journal of Civil Aviation University of China, 2010, 28(1): 29-32. (in Chinese)
    [20] 徐琳, 王恒, 黄祯, 等. 基于COMSOL有限元法的电涡流传感器仿真[J]. 排灌机械工程学报, 2015, 33(12): 1097-1104. doi: 10.3969/j.issn.1674-8530.15.0817

    XU L, WANG H, HUANG Z, et al. Simulation of eddy current sensor based on COMSOL finite element method[J]. Journal of Drainage and Irrigation Machinery Engineering, 2015, 33(12): 1097-1104. (in Chinese) doi: 10.3969/j.issn.1674-8530.15.0817
    [21] 梁博. 涡流传感器有限元仿真的研究与实施[J]. 通信电源技术, 2018, 35(5): 77-79.

    LIANG B. Research and implementation of finite element simulation of eddy current sensor[J]. Telecom Power Technology, 2018, 35(5): 77-79. (in Chinese)
  • 加载中
图(15) / 表(3)
计量
  • 文章访问数:  41
  • HTML全文浏览量:  25
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-26
  • 刊出日期:  2024-05-31

目录

    /

    返回文章
    返回