留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

机器人热控技术研究现状综述

高立龙 陈嵩 郑耿峰

高立龙,陈嵩,郑耿峰. 机器人热控技术研究现状综述[J]. 机械科学与技术,2024,43(5):737-749 doi: 10.13433/j.cnki.1003-8728.20220285
引用本文: 高立龙,陈嵩,郑耿峰. 机器人热控技术研究现状综述[J]. 机械科学与技术,2024,43(5):737-749 doi: 10.13433/j.cnki.1003-8728.20220285
GAO Lilong, CHEN Song, ZHENG Gengfeng. A Review of Thermal Control Technologies for Robots[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(5): 737-749. doi: 10.13433/j.cnki.1003-8728.20220285
Citation: GAO Lilong, CHEN Song, ZHENG Gengfeng. A Review of Thermal Control Technologies for Robots[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(5): 737-749. doi: 10.13433/j.cnki.1003-8728.20220285

机器人热控技术研究现状综述

doi: 10.13433/j.cnki.1003-8728.20220285
基金项目: 国家重点研发计划(2019YFB1310704)、国家工信部智能制造综合标准化与新模式专项(GXSP20181001)及福建省特种设备检验研究院项目(FJTJ2019023)
详细信息
    作者简介:

    高立龙,硕士研究生,97524230@qq.com

    通讯作者:

    郑耿峰,高级工程师,硕士生导师,博士,214871134@qq.com

  • 中图分类号: TP242

A Review of Thermal Control Technologies for Robots

  • 摘要: 现今,采用机器人代替人类完成各种危险的任务已经成为一种趋势。然而,机器人在高温环境下的应用受到热控技术发展的严重制约。本文首先介绍了机器人内部热敏感器件及相应的温控研究工作,进而对近年来机器人热控技术的发展现状进行了综述与分析,最后对高温环境下机器人热防护的关键问题和技术应用分别进行了探讨与展望。
  • 图  1  常见循环液冷系统[34]

    Figure  1.  Common circulating liquid cooling system[34]

    图  2  螺旋循环水冷热防护[36]

    Figure  2.  Thermal protection[36] for spiral circulating water cooling

    图  3  “Kengoro”的流汗原理[22]

    Figure  3.  Sweating principle of “Kengoro”[22]

    图  4  热管结构示意图[17]

    Figure  4.  Schematic diagram of heat pipe structure[17]

    图  5  相变材料热管理系统示意与实物[50]

    Figure  5.  Schematic diagram and physical diagram of thermal management system of phase change materials[50]

    图  6  一体化热防护结构[64, 66]

    Figure  6.  Integrated thermal protection structure[64, 66]

    图  7  空间机械臂热分析图像[69]

    Figure  7.  Thermal analysis image of space manipulator[69]

    图  8  耐高温消防机器人[74]

    Figure  8.  High temperature resistant fire fighting robot[74]

    表  1  民用电子器件最高结温一般规定[19]

    Table  1.   General rules for maximum junction temperature of civil electronic devices[19]

    器件分类 允许的最高结温/℃
    硅器件 塑料封装:125 ~ 150
    金属封装:150 ~ 200
    锗器件 70 ~ 90
    Ⅲ-Ⅴ族化合物器件 150 ~ 175
    下载: 导出CSV
  • [1] 董炳艳, 张自强, 徐兰军, 等. 智能应急救援装备研究现状与发展趋势[J]. 机械工程学报, 2020, 56(11): 1-25. doi: 10.3901/JME.2020.11.001

    DONG B Y, ZHANG Z Q, XU L J, et al. Research status and development trend of intelligent emergency rescue equipment[J]. Journal of Mechanical Engineering, 2020, 56(11): 1-25. (in Chinese) doi: 10.3901/JME.2020.11.001
    [2] NAGATANI K, KIRIBAYASHI S, OKADA Y, et al. Emergency response to the nuclear accident at the Fukushima Daiichi Nuclear Power Plants using mobile rescue robots[J]. Journal of Field Robotics, 2013, 30(1): 44-63. doi: 10.1002/rob.21439
    [3] 赵宇鴳, 刘建忠, 邹永廖, 等. 金星探测研究进展与未来展望[J]. 地质学报, 2021, 95(9): 2703-2724.

    ZHAO Y Y, LIU J Z, ZOU Y L, et al. Progress and future prospects of Venus exploration[J]. Acta Geologica Sinica, 2021, 95(9): 2703-2724. (in Chinese)
    [4] 韩延龙, 栾伟玲, 张衍, 等. 电子器件热防护技术及在核机器人中的应用[J]. 核科学与工程, 2015, 35(1): 112-122.

    HAN Y L, LUAN W L, ZHANG Y, et al. Thermal control technologies of electronic devices and their applications on nuclear robots[J]. Nuclear Science and Engineering, 2015, 35(1): 112-122. (in Chinese)
    [5] SEVINCHAN E, DINCER I, LANG H X. A review on thermal management methods for robots[J]. Applied Thermal Engineering, 2018, 140: 799-813. doi: 10.1016/j.applthermaleng.2018.04.132
    [6] SEVINCHAN E, DINCER I, LANG H X. Investigation of heat transfer performance of various insulating materials for robots[J]. International Journal of Heat and Mass Transfer, 2019, 131: 907-919. doi: 10.1016/j.ijheatmasstransfer.2018.11.072
    [7] 王康, 张沛, 林云成, 等. 采样机械臂关节月表环境适应性设计[J]. 航天器环境工程, 2017, 34(5): 482-489.

    WANG K, ZHANG P, LIN Y C, et al. Environmental adaptive design of joint for a lunar surface sampling arm[J]. Spacecraft Environment Engineering, 2017, 34(5): 482-489. (in Chinese)
    [8] 谢戈辉, 郭文亮, 韩念琛, 等. 基于CFD的焦炉测温机器人冷却风道结构设计[J]. 煤炭技术, 2018, 37(12): 217-220.

    XIE G H, GUO W L, HAN N C, et al. Structural design of cooling air duct for measuring temperature rail-mounted robot of coke oven based on CFD analysis[J]. Coal Technology, 2018, 37(12): 217-220. (in Chinese)
    [9] YOSHIIKE T, KURODA M, UJINO R, et al. Development of experimental legged robot for inspection and disaster response in plants[C]// 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Vancouver, BC, Canada: IEEE, 2017: 4869-4876.
    [10] CAO J N, LI C Y, HUANG D X, et al. Research of thermal management technology for battery of robot working in alpine region[C]// 2016 4th International Conference on Applied Robotics for the Power Industry (CARPI). Jinan, China: IEEE, 2016: 1-4.
    [11] 王哲夫. 火灾救援机器人电子器件热防护技术研究[D]. 厦门: 厦门理工学院, 2021.

    WANG Z F. Research on thermal protection technology for electronic devices of fire rescue robot[D]. Xiamen: Xiamen University of Technology, 2021. (in Chinese)
    [12] 许礼进, 冯海生, 方雄灿, 等. 工业机器人电气控制柜的热流场分析[J]. 机床与液压, 2018, 46(15): 32-36. doi: 10.3969/j.issn.1001-3881.2018.15.008

    XU L J, FENG H S, FANG X C, et al. Thermal flow field analysis of industrial robot control cabinet[J]. Machine Tool & Hydraulics, 2018, 46(15): 32-36. (in Chinese) doi: 10.3969/j.issn.1001-3881.2018.15.008
    [13] AKAWUNG A F, FUJIMOTO Y. Design and evaluation of airflow cooling system for high-power-density motor for robotic applications[C]// 2020 IEEE Energy Conversion Congress and Exposition (ECCE). Detroit, MI, USA: IEEE, 2020: 1715-1721.
    [14] MOORE B J, ATKINS E, TILBURY D. Thermal modeling for temperature aware operations in field robots[C]// ASME 2012 5th Annual Dynamic Systems and Control Conference Joint with the JSME 2012 11th Motion and Vibration Conference. Fort Lauderdale, Florida, USA: ASME, 2012: 509-518.
    [15] URATA J, HIROSE T, NAMIKI Y, et al. Thermal control of electrical motors for high-power humanoid robots[C]// 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems. Nice, France: IEEE, 2008: 2047-2052.
    [16] 李法设. 高温机械臂冷却技术的研究[D]. 上海: 上海交通大学, 2014.

    LI F S. Research of cooling technology of high temperature robot arm[D]. Shanghai: Shanghai Jiao Tong University, 2014. (in Chinese)
    [17] SHABANY Y. 传热学: 电力电子器件热管理[M]. 余小玲, 吴伟烽, 刘飞龙, 译. 北京: 机械工业出版社, 2013.

    SHABANY Y. Heat transfer: thermal management of electronics[M]. YU X L, WU W F, LIU F L, trans. Beijing: China Machine Press, 2013. (in Chinese)
    [18] HE Z Q, YAN Y F, ZHANG Z E. Thermal management and temperature uniformity enhancement of electronic devices by micro heat sinks: a review[J]. Energy, 2021, 216: 119223. doi: 10.1016/j.energy.2020.119223
    [19] 余建祖, 高红霞, 谢永奇. 电子设备热设计及分析技术[M]. 2版. 北京: 北京航空航天大学出版社, 2008.

    YU J Z, GAO H X, XIE Y Q. Thermal design and analysis technology of electronic equipment[M]. 2nd ed. Beijing: Beihang University Press, 2008. (in Chinese)
    [20] GAO S, TAO A H, CHENG J J, et al. Thermal management solutions for a traction robot for use in downhole extreme conditions[C]// 2016 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm). Las Vegas, NV: IEEE, 2016: 113-117.
    [21] MAZUMDAR A, SPENCE S J, HOBART C, et al. Improving robotic actuator torque density and efficiency through enhanced heat transfer[C]//Proceedings of the ASME 2016 Dynamic Systems and Control Conference. Minneapolis, Minnesota, USA: ASME, 2016: V002T26A004.
    [22] KOZUKI T, TOSHINORI H, SHIRAI T, et al. Skeletal structure with artificial perspiration for cooling by latent heat for musculoskeletal humanoid Kengoro[C]//2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Daejeon, Korea (South): IEEE, 2016: 2135-2140.
    [23] ZHU T Y M, HOOKS J, HONG D. Design, modeling, and analysis of a liquid cooled proprioceptive actuator for legged robots[C]// 2019 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM). Hong Kong, China: IEEE, 2019: 36-43.
    [24] 汤勇, 孙亚隆, 郭志军, 等. 电机散热系统的研究现状与发展趋势[J]. 中国机械工程, 2021, 32(10): 1135-1150. doi: 10.3969/j.issn.1004-132X.2021.10.001

    TANG Y, SUN Y L, GUO Z J, et al. Development status and perspective trend of motor cooling systems[J]. China Mechanical Engineering, 2021, 32(10): 1135-1150. (in Chinese) doi: 10.3969/j.issn.1004-132X.2021.10.001
    [25] KAMINAGA H, KO T Y, YORITA S, et al. Enhancement of mechanical strength, computational power, and heat management for fieldwork humanoid robots[C]// 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids). Cancun, Mexico: IEEE, 2016: 786-793.
    [26] PAINE N, SENTIS L. Design and comparative analysis of a retrofitted liquid cooling system for high-power actuators[J]. Actuators, 2015, 4(3): 182-202. doi: 10.3390/act4030182
    [27] 饶中浩. 基于固液相变传热介质的动力电池热管理研究[D]. 广州: 华南理工大学, 2013.

    RAO Z H. Research on power battery thermal management based on solid-liquid phase change heat transfer medium[D]. Guangzhou: South China University of Technology, 2013. (in Chinese)
    [28] WU W X, WANG S F, WU W, et al. A critical review of battery thermal performance and liquid based battery thermal management[J]. Energy Conversion and Management, 2019, 182: 262-281. doi: 10.1016/j.enconman.2018.12.051
    [29] 张健. 电力电子器件及其装置的散热结构优化研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.

    ZHANG J. Study on heat dissipation structure optimization of power electronic device and equipment[D]. Harbin: Harbin Institute of Technology, 2015. (in Chinese)
    [30] 曹涛, 孙大庆, 杨墨, 等. 变电站智能巡检机器人散热系统分析[J]. 机械设计与制造, 2012(9): 161-163.

    CAO T, SUN D Q, YANG M, et al. Substation inspection robot based on intelligent analysis of cooling system[J]. Machinery Design & Manufacture, 2012(9): 161-163. (in Chinese)
    [31] NOH J, LEE J, YANG W, et al. Design of a concentrically stacked modular actuator with forced air cooling for multi-DOF robotic systems[J]. Energies, 2018, 11(11): 2947. doi: 10.3390/en11112947
    [32] BIRBARAH P, GEBRAEL T, FOULKES T, et al. Water immersion cooling of high power density electronics[J]. International Journal of Heat and Mass Transfer, 2020, 147: 118918. doi: 10.1016/j.ijheatmasstransfer.2019.118918
    [33] WU R K, HONG T, CHENG Q Y, et al. Thermal modeling and comparative analysis of jet impingement liquid cooling for high power electronics[J]. International Journal of Heat and Mass Transfer, 2019, 137: 42-51. doi: 10.1016/j.ijheatmasstransfer.2019.03.112
    [34] 孙柯. 核救灾机器人电子器件热防护系统研究[D]. 上海: 华东理工大学, 2017.

    SUN K. Research on thermal protection system of electronic device for nuclear disaster relief robot[D]. Shanghai: East China University of Science and Technology, 2017. (in Chinese)
    [35] KARNG S W, LEE S W, HWANG K, et al. Performance measurement of liquid-cooled cold plates for humanoid robot cooling[C]// Proceedings of ASME 2007 InterPACK Conference collocated with the ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference. Vancouver, British Columbia, Canada: ASME, 2007: 767-772.
    [36] 陈坦. 托卡马克腔高温辐射环境下内窥机械臂关键单元部件研究[D]. 上海: 上海交通大学, 2016.

    CHEN T. Research on key components of Tokamak in-vessel inspection manipulator[D]. Shanghai: Shanghai Jiao Tong University, 2016. (in Chinese)
    [37] CHEN T, ZHANG W J, YUAN J J, et al. Design of cooling system for inspection manipulator and analysis based on experiment[J]. Industrial Robot:An International Journal, 2016, 43(2): 231-240. doi: 10.1108/IR-07-2015-0136
    [38] YUAN J J, CHEN T, LI F S, et al. Active cooling system for Tokamak in-vessel operation manipulator[J]. Fusion Engineering and Design, 2015, 98-99: 1696-1700. doi: 10.1016/j.fusengdes.2015.06.099
    [39] 吴诚骁. 托卡马克腔特种环境下内窥机械臂闭环主动冷却系统研究[D]. 上海: 上海交通大学, 2015.

    WU C X. Research on active close-loop cooling system for ITER inspection robot arm under hazardous environment[D]. Shanghai: Shanghai Jiao Tong University, 2015. (in Chinese)
    [40] 吴诚骁, 袁建军, 张伟军. 高温机械臂闭式水冷循环系统设计以及实验[J]. 机电一体化, 2015, 21(4): 57-61.

    WU C X, YUAN J J, ZHANG W J. Implementation and experiment of closed-loop water cooling system for robot arm[J]. Mechatronics, 2015, 21(4): 57-61. (in Chinese)
    [41] 李法设, 袁建军, 张伟军. 高温检测机械臂的相机水冷罩传热分析和仿真[J]. 机电一体化, 2014, 20(4): 33-36.

    LI F S, YUAN J J, ZHANG W J. Thermal analysis and simulation of water-cooled camera cover of high-temperature detecting robot arm[J]. Mechatronics, 2014, 20(4): 33-36. (in Chinese)
    [42] 钱炳锋, 吴婷, 张栋, 等. 带冷却系统的焊接机器人结构光视觉传感器[J]. 上海电机学院学报, 2010, 13(3): 144-146. doi: 10.3969/j.issn.2095-0020.2010.03.005

    QIAN B F, WU T, ZHANG D, et al. Structured light vision sensor with cooling system on welding robot[J]. Journal of Shanghai Dianji University, 2010, 13(3): 144-146. (in Chinese) doi: 10.3969/j.issn.2095-0020.2010.03.005
    [43] FANG Y D, YANG W L, XU D, et al. Experimental investigation on flow boiling characteristics of R1233zd(E) in a parallel mini-channel heat sink for the application in battery thermal management[J]. International Journal of Heat and Mass Transfer, 2021, 178: 121591. doi: 10.1016/j.ijheatmasstransfer.2021.121591
    [44] EL-KHOULY M M, EL BOUZ M A, SULTAN G I. Experimental and computational study of using nanofluid for thermal management of electronic chips[J]. Journal of Energy Storage, 2021, 39: 102630. doi: 10.1016/j.est.2021.102630
    [45] YADAV V, BAGHEL K, KUMAR R, et al. Numerical investigation of heat transfer in extended surface microchannels[J]. International Journal of Heat and Mass Transfer, 2016, 93: 612-622. doi: 10.1016/j.ijheatmasstransfer.2015.10.023
    [46] HOCHBERG U, DIETSCHE A, DORER K. Evaporative cooling of actuators for humanoid robots[C]// 8th Workshop on Humanoid Soccer Robots, IEEE-RAS International Conference on Humanoid Robots. Atlanta: IEEE, 2013.
    [47] MISHRA A K, PAN W Y, GIANNELIS E P, et al. Making bioinspired 3D-printed autonomic perspiring hydrogel actuators[J]. Nature Protocols, 2021, 16(4): 2068-2087. doi: 10.1038/s41596-020-00484-z
    [48] LEE D. Development of modularized airtight controller for mobile welding robot working in harsh environments[J]. Robotics and Computer-Integrated Manufacturing, 2013, 29(5): 410-417. doi: 10.1016/j.rcim.2013.03.004
    [49] 栾伟玲, 韩延龙, 张晓霓, 等. 用于核救灾机器人的电机驱动器安全防护[J]. 机械工程学报, 2017, 53(21): 9-15. doi: 10.3901/JME.2017.21.009

    LUAN W L, HAN Y L, ZHANG X N, et al. Safety protection of motor driver in nuclear rescue robot[J]. Journal of Mechanical Engineering, 2017, 53(21): 9-15. (in Chinese) doi: 10.3901/JME.2017.21.009
    [50] HAN Y L, LUAN W L, JIANG Y F, et al. Protection of electronic devices on nuclear rescue robot: passive thermal control[J]. Applied Thermal Engineering, 2016, 101: 224-230. doi: 10.1016/j.applthermaleng.2016.02.116
    [51] 韩延龙. 基于相变材料的核救灾机器人电子器件热防护研究[D]. 上海: 华东理工大学, 2016.

    HAN Y L. Phase change material based thermal management for electronic devices on nuclear rescue robot[D]. Shanghai: East China University of Science and Technology, 2016. (in Chinese)
    [52] ZHANG W C, QIU J Y, YIN X X, et al. A novel heat pipe assisted separation type battery thermal management system based on phase change material[J]. Applied Thermal Engineering, 2020, 165: 114571. doi: 10.1016/j.applthermaleng.2019.114571
    [53] ZHANG W C, LIANG Z C, YIN X X, et al. Avoiding thermal runaway propagation of lithium-ion battery modules by using hybrid phase change material and liquid cooling[J]. Applied Thermal Engineering, 2021, 184: 116380. doi: 10.1016/j.applthermaleng.2020.116380
    [54] KALBASI R. Introducing a novel heat sink comprising PCM and air - Adapted to electronic device thermal management[J]. International Journal of Heat and Mass Transfer, 2021, 169: 120914. doi: 10.1016/j.ijheatmasstransfer.2021.120914
    [55] HELLER E B, YOUCEF-TOUMI K. Analysis and control of a thermal management system for robots in temperature-restricted environments[C]// 2014 American Control Conference(ACC). Portland, Oregon, USA: IEEE, 2014: 3335-3340.
    [56] JORGENSEN S J, HOLLEY J, MATHIS F, et al. Thermal recovery of multi-limbed robots with electric actuators[J]. IEEE Robotics and Automation Letters, 2019, 4(2): 1077-1084. doi: 10.1109/LRA.2019.2894068
    [57] 孙敬颋, 史士财, 陈泓, 等. 空间机械臂电磁制动器温升最优设计及热真空实验[J]. 机器人, 2012, 34(2): 170-175. doi: 10.3724/SP.J.1218.2012.00170

    SUN J T, SHI S C, CHEN H, et al. Temperature rise optimization design and thermal vacuum experiment on coil of space manipulator electromagnetic brake[J]. Robot, 2012, 34(2): 170-175. (in Chinese) doi: 10.3724/SP.J.1218.2012.00170
    [58] 欧阳金栋, 刘慧慧, 邓进, 等. 高超声速飞行器结构热防护技术现状综述[J]. 教练机, 2017(1): 39-43.

    OUYANG J D, LIU H H, DENG J, et al. Research status of structural thermo protection technology for hypersonic speeding missile[J]. Trainer, 2017(1): 39-43. (in Chinese)
    [59] 黄文宣, 邱慧, 刘峰, 等. 深空探测器防热承力一体化大底结构研究[J]. 航天返回与遥感, 2019, 40(6): 19-25.

    HUANG W X, QIU H, LIU F, et al. Research on thermal-structural integrated heatshield structure for deep space explorer[J]. Spacecraft Recovery & Remote Sensing, 2019, 40(6): 19-25. (in Chinese)
    [60] 陈照峰, 张俊雄, 王伟伟, 等. 真空绝热板技术的研究现状及发展趋势[J]. 南京航空航天大学学报, 2017, 49(1): 1-16.

    CHEN Z F, ZHANG J X, WANG W W, et al. Review of vacuum insulation panel technology and its development[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2017, 49(1): 1-16. (in Chinese)
    [61] 温永刚, 王先荣, 杨建斌, 等. 真空绝热板(VIP)技术及其发展[J]. 低温工程, 2008(6): 35-39.

    WEN Y G, WANG X R, YANG J B, et al. Vacuum insulation panel technology and its development[J]. Cryogenics, 2008(6): 35-39. (in Chinese)
    [62] 侯彬. 航天器热控涂层研究进展[J]. 现代雷达, 2021, 43(1): 86-90. doi: 10.16592/j.cnki.1004-7859.2021.01.014

    HOU B. Research progress on thermal control coatings for spacecraft[J]. Modern Radar, 2021, 43(1): 86-90. (in Chinese) doi: 10.16592/j.cnki.1004-7859.2021.01.014
    [63] ALHAZA T, ALSADOON A, ALHUSINAN Z, et al. New concept for indoor fire fighting robot[J]. Procedia- Social and Behavioral Sciences, 2015, 195: 2343-2352. doi: 10.1016/j.sbspro.2015.06.191
    [64] 徐世南, 吴催生. 高超声速飞行器热防护结构研究进展[J]. 飞航导弹, 2019(4): 48-55.

    XU S N, WU C S. Research progress on thermal protection structure of hypersonic vehicle[J]. Aerodynamic Missile Journal, 2019(4): 48-55. (in Chinese)
    [65] 赵帅. 超低温冷库巡检机器人热管理装置的实验研究和数值模拟[D]. 青岛: 青岛大学, 2020.

    ZHAO S. Experimental research and numerical simulation of thermal management system of the ultra-low temperature cold storage inspection robot[D]. Qingdao: Qingdao University, 2020. (in Chinese)
    [66] 曹晨宇, 王睿星, 邢晓冬, 等. 含相变材料热防护结构一体化设计与试验[J]. 宇航学报, 2019, 40(3): 352-361. doi: 10.3873/j.issn.1000-1328.2019.03.013

    CAO C Y, WANG R X, XING X D, et al. Design and experimental investigation of integrated thermal protection structure containing phase change material layer[J]. Journal of Astronautics, 2019, 40(3): 352-361. (in Chinese) doi: 10.3873/j.issn.1000-1328.2019.03.013
    [67] 孟松鹤, 杨强, 霍施宇, 等. 一体化热防护技术现状和发展趋势[J]. 宇航学报, 2013, 34(10): 1295-1302. doi: 10.3873/j.issn.1000-1328.2013.10.001

    MENG S H, YANG Q, HUO S Y, et al. State-of-arts and trend of integrated thermal protection systems[J]. Journal of Astronautics, 2013, 34(10): 1295-1302. (in Chinese) doi: 10.3873/j.issn.1000-1328.2013.10.001
    [68] 李承隆. 电子产品热设计及热仿真技术应用的研究[D]. 成都: 电子科技大学, 2010.

    LI C L. Research on the application of thermal design and thermal simulation technology of electronic products[D]. Chengdu: University of Electronic Science and Technology of China, 2010. (in Chinese)
    [69] 石进峰. 空间机械臂热控制关键技术研究[D]. 长春: 中国科学院长春光学精密机械与物理研究所, 2014.

    SHI J F. Research on key techniques of thermal control for space robotic arm[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2014. (in Chinese)
    [70] KANNAN N, SHAH N, AGONAFER D, et al. Design, optimization and thermal analysis of motor-controllers in a quadruped robot[C]// Proceedings of the ASME 2011 Pacific Rim Technical Conference & Exhibition on Packaging and Integration of Electronic and Photonic Systems. Portland, Oregon, USA: ASME, 2011: 257-262.
    [71] MATYSIAK L, PLATEK R. Analytical, numerical, and experimental study of a robot controller with a forced cooling system[J]. Heat Transfer Research, 2019, 50(2): 195-216. doi: 10.1615/HeatTransRes.2018018552
    [72] 吕遥, 邓斌. 液压外骨骼机器人油箱结构优化[J]. 机床与液压, 2019, 47(21): 56-59.

    LYU Y, DENG B. Structure optimization of hydraulic exoskeleton robot reservoir[J]. Machine Tool & Hydraulics, 2019, 47(21): 56-59. (in Chinese)
    [73] 吕遥. 液压外骨骼机器人油箱散热性能研究[D]. 成都: 西南交通大学, 2019.

    LYU Y. Research on heat dissipation performance of oil tank for hydraulic exoskeleton robot[D]. Chengdu: Southwest Jiaotong University, 2019. (in Chinese)
    [74] 央视频. 超硬核“网红”灭火机器人 经历1000℃高温还能到处跑[EB/OL]. (2019-10-19)[2021-12-06]. https://www.bilibili.com/video/BV18E411k7df?spm_id_from=333.999.0.0.

    MOBILE C M G. The super-hard-core "network celebrity" fire-fighting robot can still be operated normally after suffering a high temperature of 1000 ℃[EB/OL]. (2019-10-19)[2021-12-06]. https://www.bilibili.com/video/BV18E411k7df?spm_id_from=333.999.0.0. (in Chinese)
    [75] 商博锋. 相变材料导热强化及其在高温测井仪热管理中的应用研究[D]. 武汉: 华中科技大学, 2019.

    SHANG B F. Thermal enhancement of phase change material and its application in thermal management of high-temperature logging tools[D]. Wuhan: Huazhong University of Science and Technology, 2019. (in Chinese)
    [76] GUO L, ZHANG X S, HUANG Y, et al. Thermal characterization of a new differential thermal expansion heat switch for space optical remote sensor[J]. Applied Thermal Engineering, 2017, 113: 1242-1249. doi: 10.1016/j.applthermaleng.2016.11.102
    [77] 郭亮, 张旭升, 黄勇, 等. 空间热开关在航天器热控制中的应用与发展[J]. 光学 精密工程, 2015, 23(1): 216-229. doi: 10.3788/OPE.20152301.0216

    GUO L, ZHANG X S, HUANG Y, et al. Applications and development of space heat switches in spacecraft thermal control[J]. Optics and Precision Engineering, 2015, 23(1): 216-229. (in Chinese) doi: 10.3788/OPE.20152301.0216
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  134
  • HTML全文浏览量:  42
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-26
  • 刊出日期:  2024-05-31

目录

    /

    返回文章
    返回