留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

改进粒子群算法的单杆柔性臂振动抑制方法研究

张乐天 张莉 宋倩 钱文浩 宋鑫

张乐天,张莉,宋倩, 等. 改进粒子群算法的单杆柔性臂振动抑制方法研究[J]. 机械科学与技术,2024,43(5):812-818 doi: 10.13433/j.cnki.1003-8728.20220284
引用本文: 张乐天,张莉,宋倩, 等. 改进粒子群算法的单杆柔性臂振动抑制方法研究[J]. 机械科学与技术,2024,43(5):812-818 doi: 10.13433/j.cnki.1003-8728.20220284
ZHANG Letian, ZHANG Li, SONG Qian, QIAN Wenhao, SONG Xin. Research on Optimal Control Method of Single Flexible Manipulator by Improved PSO Algorithm[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(5): 812-818. doi: 10.13433/j.cnki.1003-8728.20220284
Citation: ZHANG Letian, ZHANG Li, SONG Qian, QIAN Wenhao, SONG Xin. Research on Optimal Control Method of Single Flexible Manipulator by Improved PSO Algorithm[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(5): 812-818. doi: 10.13433/j.cnki.1003-8728.20220284

改进粒子群算法的单杆柔性臂振动抑制方法研究

doi: 10.13433/j.cnki.1003-8728.20220284
基金项目: 陕西省教育厅研究项目(10JK510)
详细信息
    作者简介:

    张乐天,硕士研究生,1377495117@qq.com

    通讯作者:

    张莉,副教授,硕士生导师,dx_zhangli@126.com

  • 中图分类号: TH113.1

Research on Optimal Control Method of Single Flexible Manipulator by Improved PSO Algorithm

  • 摘要: 对于传统的线性二次调节器(LQR)控制的柔性机械臂,加权矩阵通常根据先验知识进行选取,粒子群算法可以通过迭代运算自主寻找最优解,传统粒子群算法的收敛速度比较慢,因此本文提出了一种改进粒子群算法优化加权矩阵的方法。使用Lagrange方程建立单杆柔性机械臂的动力学方程,并依据LQR推导出其控制模型。在模型求解中基于传统粒子群算法,引入交叉操作以及非线性动态惯性权重来提高全局和局部搜索能力。最后,通过仿真结果对比分析表明,改进粒子群算法的收敛速度更快,且抑振效果优于传统的粒子群算法,为其更高精度的应用提供辅助与支撑。
  • 图  1  单连杆柔性机械臂示意图

    Figure  1.  Schematic diagram of single-link flexible manipulator

    图  2  LQR控制Simulink模型

    Figure  2.  Simulink model controlled by LQR

    图  3  控制总流程图

    Figure  3.  General flow chart of control

    图  4  传统PSO算法优化曲线

    Figure  4.  Optimization curve of traditional PSO algorithm

    图  5  改进PSO算法优化曲线

    Figure  5.  Optimization curve of improved PSO algorithm

    图  6  端部转角(传统&改进)

    Figure  6.  Angle of the end (traditional & improved)

    图  7  末端弹性振动(传统&改进)

    Figure  7.  Elastic vibration at the end (traditional & improved)

    图  8  端部转角(改进&经验)

    Figure  8.  Angle of the end (improved & empirical)

    图  9  末端弹性振动(改进&经验)

    Figure  9.  Elastic vibration at the end (improved & empirical)

    表  1  柔性机械臂物理参数

    Table  1.   Physical parameters of the flexible manipulator

    柔性臂参数 数值
    密度$ \rho $/(kg·m−3 7.8 × 103
    臂长$ l $/m 1.50
    截面宽度$ b $/mm 30.00
    截面高度$ h $/mm 3.20
    弹性模量$ E $/(N·m−2 2.0 × 1011
    端部质量$ {m_l} $/kg 0.10
    转动惯量$ {J_h} $/(kg·m2 0.75
    下载: 导出CSV

    表  2  传统与改进粒子群参数对比

    Table  2.   Comparison of traditional and improved particle swarm parameters

    参数 改进粒子群 传统粒子群
    种群粒子数 50 50
    $ {{{c}}_1} $ $ \left[ {1.70},\;\;{2.30} \right] $ 2
    $ {{{c}}_2} $ $ \left[ {1.60},\;\;{2.40} \right] $ 2
    $ \omega $ $ \left[ {0.6},\;\;{0.8} \right] $ 0.75
    最大迭代次数 100 100
    杂交概率 0.8
    杂交池比例 0.2
    下载: 导出CSV
  • [1] JING Z L, XU Q M, HUANG J Z. A review on kinematic analysis and dynamic stable control of space flexible manipulators[J]. Aerospace Systems, 2019, 2(1): 1-14. doi: 10.1007/s42401-018-00024-4
    [2] 邱志成. 柔性机械臂的振动测量和控制研究进展综述[J]. 信息与控制, 2021, 50(2): 141-161.

    QIU Z C. Review on research progress in vibration measurement and control of flexible manipulators[J]. Information and Control, 2021, 50(2): 141-161. (in Chinese)
    [3] SAYAHKARAJY M, MOHAMED Z, FAUDZI A A M. Review of modelling and control of flexible-link manipulators[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2016, 230(I8): 861-873.
    [4] 付邦晨, 王海, 邱皖群, 等. 基于PID的柔性关节机械臂控制策略研究[J]. 安徽工程大学学报, 2016, 31(2): 45-48. doi: 10.3969/j.issn.2095-0977.2016.02.010

    FU B C, WANG H, QIU W Q, et al. Flexible joint manipulators control strategy based on PID control[J]. Journal of Anhui Polytechnic University, 2016, 31(2): 45-48. (in Chinese) doi: 10.3969/j.issn.2095-0977.2016.02.010
    [5] ALAM M S, TOKHI M O. Hybrid fuzzy logic control with genetic optimisation for a single-link flexible manipulator[J]. Engineering Applications of Artificial Intelligence, 2008, 21(6): 858-873. doi: 10.1016/j.engappai.2007.08.002
    [6] 周鑫林, 李光, 肖凡. 柔性机械臂的状态观测及跟踪控制研究[J]. 机械科学与技术, 2018, 37(7): 1027-1033.

    ZHOU X L, LI G, XIAO F. Research on state observation and tracking control of flexible manipulators[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(7): 1027-1033. (in Chinese)
    [7] LONG T, LI E, HU Y Q, et al. A vibration control method for hybrid-structured flexible manipulator based on sliding mode control and reinforcement learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(2): 841-852. doi: 10.1109/TNNLS.2020.2979600
    [8] 陈志勇, 张婷婷. 柔性基、柔性关节空间机械臂的动力学与改进奇异摄动控制[J]. 机械科学与技术, 2017, 36(7): 1005-1010.

    CHEN Z Y, ZHANG T T. Dynamics and improved singular perturbation control of flexible-base and flexible-joint space manipulator[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(7): 1005-1010. (in Chinese)
    [9] 康建云, 毕果, 苏史博. 压电柔性机械臂系统辨识与振动主动控制[J]. 振动、测试与诊断, 2021, 41(1): 90-95.

    KANG J Y, BI G, SU S B. Experimental identification and active vibration control of piezoelectric flexible manipulator[J]. Journal of Vibration, Measurement & Diagnosis, 2021, 41(1): 90-95. (in Chinese)
    [10] 郭珂甫, 刘广瑞, 王庆海. 线性二次型在柔性机械臂抑振控制中的研究[J]. 机械设计与制造, 2018(7): 256-259. doi: 10.3969/j.issn.1001-3997.2018.07.071

    GUO K F, LIU G R, WANG Q H. Research on linear quadratic optimal control in vibration control of flexible manipulator[J]. Machinery Design & Manufacture, 2018(7): 256-259. (in Chinese) doi: 10.3969/j.issn.1001-3997.2018.07.071
    [11] RAZMJOOY N, RAMEZANI M, NAMADCHIAN A. A new LQR optimal control for a single-link flexible joint robot manipulator based on grey wolf optimizer[J]. Majlesi Journal of Electrical Engineering, 2016, 10(3): 53-60.
    [12] 路恩, 杨雪锋, 李威, 等. 基于混合粒子群算法的单杆柔性臂LQR位置控制优化设计[J]. 组合机床与自动化加工技术, 2015(9): 49-52.

    LU E, YANG X F, LI W, et al. The optimal design of LQR tip position control for single flexible manipulators based on hybrid particle swarm algorithm[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2015(9): 49-52. (in Chinese)
    [13] 李龙飞, 邱明. 振动力学[M]. 成都: 电子科技大学出版社, 2019.

    LI L F, QIU M. Vibration mechanics[M]. Chengdu: University of Electronic Science and Technology of China Press, 2019. (in Chinese)
    [14] 金在权. 单连杆柔性机械臂的动力学建模[J]. 延边大学学报(自然科学版), 1994, 20(2): 32-35.

    JIN Z Q. Dynamic Modeling of Flexible Manipulator with Single Link[J]. Journal of Yanbian University (Natural Science), 1994, 20(2): 32-35. (in Chinese)
    [15] WALKER B. Particle swarm optimization PSO: advances in research and applications[M]. Commack: Nova Science Publishers, 2017.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  47
  • HTML全文浏览量:  20
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-24
  • 刊出日期:  2024-05-31

目录

    /

    返回文章
    返回